

STS9D8NH3LL

Dual N-channel 30 V - 0.012 Ω - 9 A - SO-8 low on-resistance STripFETTM Power MOSFET

Features

Туре		V_{DSS}	R _{DS(on)}	Qg	I _D
STS9D8NH3LL	Q_1	30V	< 0.022Ω	7nC	8A
OTOSBONIOLE	Q_2	30V	< 0.015Ω	8nC	9A

- Optimal R_{DS}(on) x Qg trade-off @ 4.5V
- Conduction losses reduced
- Switching losses reduced

Application

■ Switching applications

Description

This device uses the latest advanced design rules of ST's STrip based technology. The Q1 and Q2 transistors, show respectively, the best gate charge and on-resistance for minimizing the switching and conduction losses. This application specific Power MOSFET has been designed to replace two SO-8 packages in DC-DC converters.

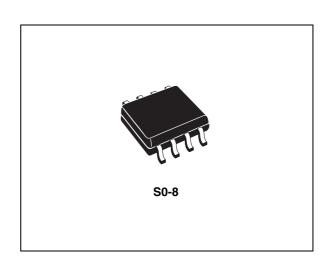


Figure 1. Internal schematic diagram

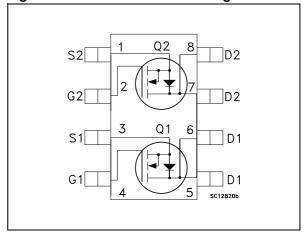


Table 1. Device summary

Order code	Marking	Package	Packaging
STS9D8NH3LL	9D8H3LL-	SO-8	Tape & reel

Contents STS9D8NH3LL

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	5
3	Test circuit	8
4	Package mechanical data	9
5	Revision history	11

STS9D8NH3LL Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Туре	Value	Unit
V _{DS}	Drain-source voltage (v _{GS} = 0)	Q ₁ Q ₂	30 30	V V
V _{GS}	Gate- source voltage	Q ₁ Q ₂	±16 ±16	V V
I _D	Drain current (continuous) at T _C = 25°C	Q ₁ Q ₂	8 9	A A
I _D	Drain current (continuous) at T _C = 100°C	Q ₁ Q ₂	5 6.3	A A
I _{DM} ⁽¹⁾	Drain current (pulsed)	Q ₁ Q ₂	32 36	A A
P _{TOT}	Total dissipation at T _C = 25°C	Q ₁ Q ₂	2 2	W W
E _{AS} ⁽²⁾	Single pulse avalanche energy		150	mJ

^{1.} Pulse width limited by safe operating area

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-a} (1)	Thermal resistance junction-ambient max	62.5	°C/W
T_J	Thermal operating junction-ambient	150	°C
T _{stg}	Storage temperature	-55 to 150	°C

^{1.} When mounted on 1 inch² FR-4 board, 2 oz. Cu., $t \le 10s$

^{2.} Starting $T_J = 25$ °C, $I_D = 7.5$ A

Electrical characteristics STS9D8NH3LL

2 Electrical characteristics

(T_{CASE} =25°C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Туре	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	Q ₁ Q ₂	30 30			V V
I _{DSS}	Zero gate voltage Drain current (V _{GS} = 0)	V _{DS} = Max rating	Q ₁ Q ₂			1	μ Α μ Α
I _{DSS}	Zero gate voltage Drain current (V _{GS} = 0)	V _{DS} =Max rating @ 125°C	Q ₁ Q ₂			10 10	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 16 V	Q ₁ Q ₂			±100 ±100	nA nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS},$ $I_D = 250 \mu A$	Q ₁ Q ₂	1			V V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, I_D = 4 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 4.5 \text{ A}$	Q ₁ Q ₂		0.018 0.012	0.022 0.015	Ω
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 4.5 \text{ V}, I_D = 4 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 4.5 \text{ A}$	Q ₁ Q ₂		0.020 0.014	0.025 0.0175	Ω Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Туре	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		Q ₁ Q ₂		857 1070		pF pF
C _{oss}	Output capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	Q ₁ Q ₂		147 290		pF pF
C _{rss}	Reverse transfer capacitance		Q ₁ Q ₂		20 34		pF pF
Qg	Total gate charge		Q ₁ Q ₂		7 8	10 11	nC nC
Q _{gs}	Gate-source charge	$V_{DD} = 15 \text{ V, } I_{D} = 8 \text{ A,}$ $V_{GS} = 4.5 \text{ V}$ (see Figure 25)	Q ₁ Q ₂		2.5 2		nC nC
Q _{gd}	Gate-drain charge	(655 / igal 5 20)	Q ₁ Q ₂		2.3 2.8		nC nC

Table 6. Switching times

Symbol	Parameter	Test conditions	Туре	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} =15 V, I_{D} =4 A, R_{G} =4.7 Ω , V_{GS} = 4.5 V	Q_1 Q_2 Q_1		12 8.2 14.5		ns ns ns
t _r	Trise unie	(see Figure 27)	Q_1		6		ns
t _{d(off)}	Turn-off delay time	V_{DD} =15 V, I_{D} =4 A, R_{G} =4.7 Ω	Q ₁ Q ₂		23 27.8		ns ns
t _f	Fall time	V _{GS} = 4.5V (see Figure 27)	Q ₁ Q ₂		8 3.6		ns ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Туре	Min	Тур.	Max	Unit
I _{SD}	Source-drain current	V_{DD} =15 V, I_{D} =4 A R_{G} =4.7 Ω V_{GS} =4.5 V	Q ₁ Q ₂			8	A A
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)	V_{DD} =15 V, I_{D} = 4A R_{G} =4.7 Ω V_{GS} =4.5 V	Q ₁ Q ₂			32 36	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 8 A, V _{GS} = 0	Q ₁ Q ₂			1.5 1.5	V V
t _{rr}	Reverse recovery time	I _{SD} = 8 A,	Q ₁ Q ₂		15 22.8		ns ns
Q _{rr}	Reverse recovery charge	V _{DD} = 15 V di/dt = 100 A/μs,	Q_1 Q_2		5.7 14.9		nC nC
I _{RRM}	Reverse recovery current	$T_j = 150^{\circ}C$ (see Figure 26)	Q ₁ Q ₂		0.76 1.3		A A

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics STS9D8NH3LL

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for Q1

Figure 3. Safe operating area for Q2

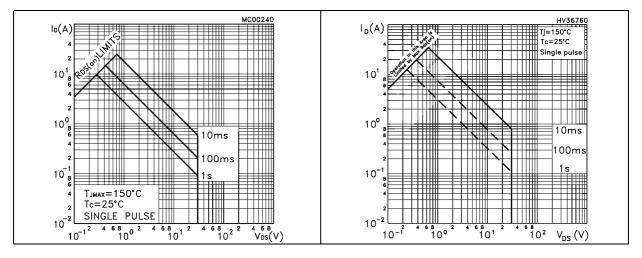


Figure 4. Thermal impedance for Q1

Figure 5. Thermal impedance for Q2

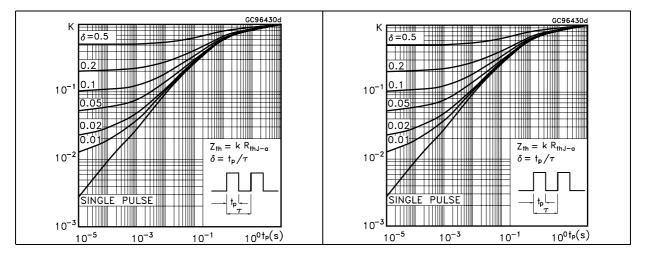
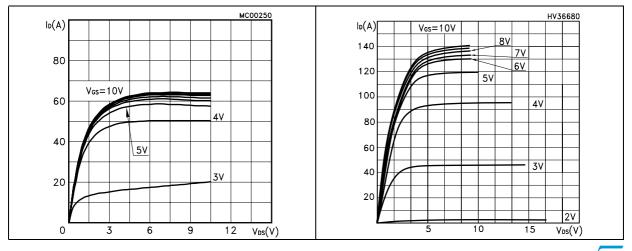
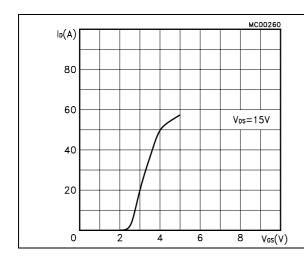



Figure 6. Output characteristics for Q1


Figure 7. Output characteristics for Q2

6/14

Figure 8. **Transfer characteristics for Q1**

Figure 9. **Transfer characteristics for Q2**

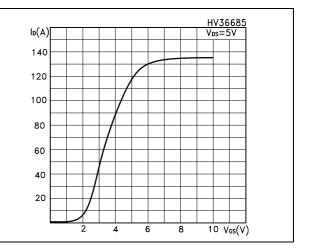
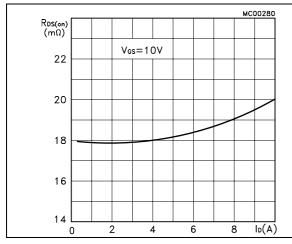
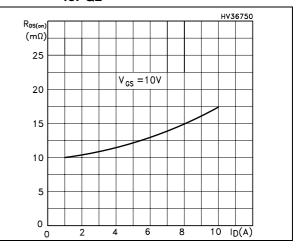
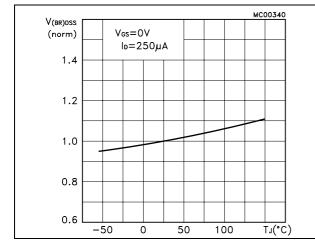
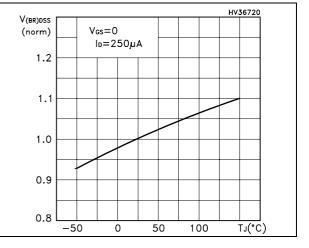




Figure 10. Static drain-source on resistance for Q1


Figure 11. Static drain-source on resistance for Q2



for Q1

Figure 12. Normalized BV_{DSS} vs temperature Figure 13. Normalized BV_{DSS} vs temperature for Q2

Electrical characteristics STS9D8NH3LL

Figure 14. Gate charge vs gate-source voltage Figure 15. Gate charge vs gate-source voltage for Q1 for Q2

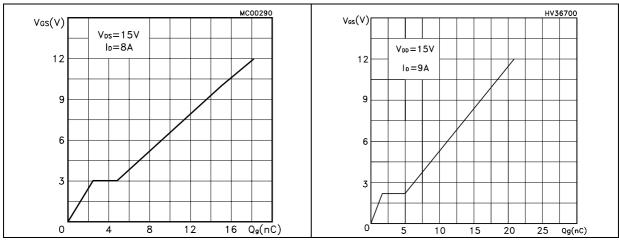


Figure 16. Capacitance variations for Q1

Figure 17. Capacitance variations for Q2

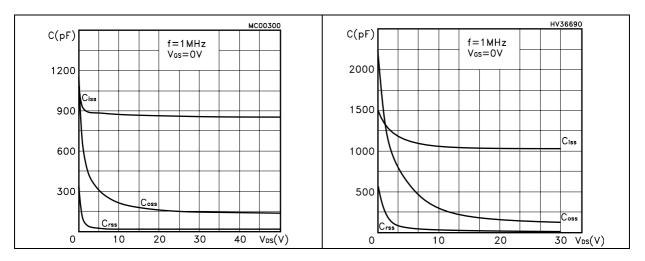
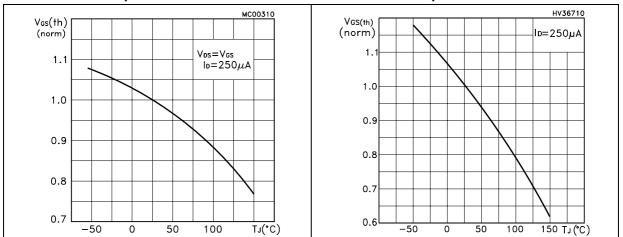



Figure 18. Normalized gate threshold voltage Figure 19. Normalized gate threshold voltage vs temperature for Q1 vs temperature for Q2

577

Figure 20. Normalized on resistance vs temperature for Q1

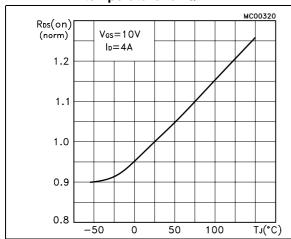


Figure 21. Normalized on resistance vs temperature for Q2

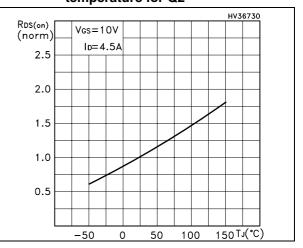


Figure 22. Source-drain diode forward characteristics for Q1

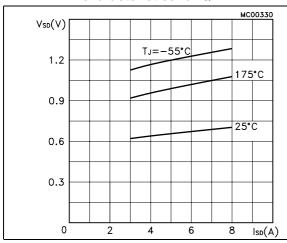
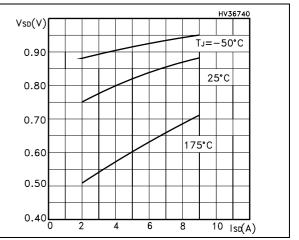



Figure 23. Source-drain diode forward characteristics for Q2

Test circuit STS9D8NH3LL

3 Test circuit

Figure 24. Switching times test circuit for resistive load

Figure 25. Gate charge test circuit

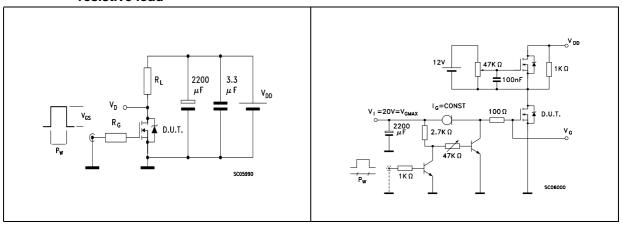


Figure 26. Test circuit for inductive load switching and diode recovery times

Figure 27. Unclamped Inductive load test circuit

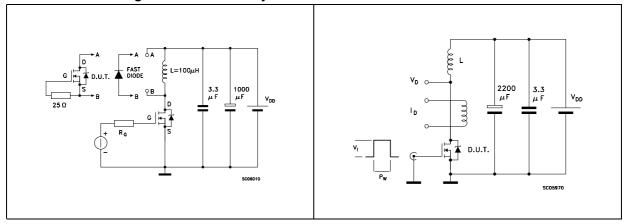
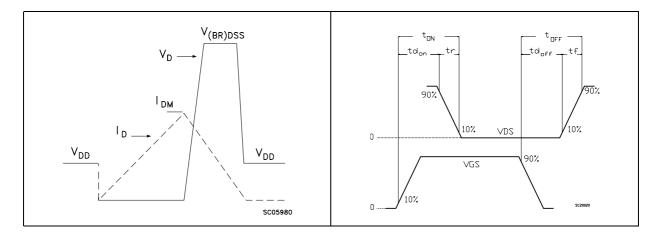
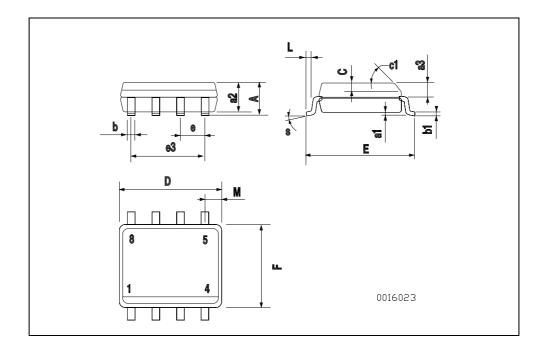



Figure 28. Unclamped inductive waveform

Figure 29. Switching time waveform

577


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

11/14

SO-8	MECHANICAL	$D\Delta T\Delta$
30-0		. レヘιヘ

DIM.		mm.			inch	
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1		•	45	(typ.)	•	
D	4.8		5.0	0.188		0.196
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S			8 (r	nax.)	•	

STS9D8NH3LL Revision history

5 Revision history

Table 8. Document revision history

Date	Revision	Changes
05-Jan-2007	1	First release
06-Mar-2007 2 Some value changed on <i>Table 4</i> (R _{DS(on)} for Q2)		Some value changed on <i>Table 4</i> (R _{DS(on)} for Q2)
10-Dec-2007	3	Added E _{AS} value on <i>Table 2: Absolute maximum ratings</i>

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B