STSPIN32F0

Advanced BLDC controller with embedded STM32 MCU

Datasheet - production data

Features

- Extended operating voltage from 8 to 45 V
- Three-phase gate drivers
 - 600 mA sink/source
 - Integrated bootstrap diodes
 - Cross-conduction prevention
- 32-bit ARM[®] Cortex[®]-M0 core:
 - Up to 48 MHz clock frequency
 - 4-kByte SRAM with HW parity
 - 32-kByte Flash memory with option bytes used for write/readout protection
- 3.3. V DC/DC buck converter regulator with overcurrent, short-circuit, and thermal protection
- 12 V LDO linear regulator with thermal protection
- 16 general-purpose I/O ports (GPIO)
- 5 general-purpose timers
- 12-bit ADC converter (up to 9 channels)
- I²C, USART and SPI interfaces
- 4 rail-to-rail operation amplifiers for signal conditioning
- Comparator for overcurrent protection with programmable threshold
- 3FG open-drain output providing the decoded result of 3 Hall sensors inputs
- Standby mode for low power consumption

- UVLO protection on each power supply:
 - $-V_{M}, V_{DD}, V_{REG}$ and V_{BOOTx}
- On-chip debug support via SWD
- Extended temperature range: -40 to +125 °C

Applications

- Kitchen robots
- Portable vacuum cleaners
- Hand dryers and air purifiers
- Drones and aero. modeling
- Power tools
- Industrial and educational robots
- · Home appliance and air-con. fans

Contents STSPIN32F0

Contents

1	Desc	ription
2	Bloc	k diagrams 5
3	Elect	trical data
	3.1	Absolute maximum ratings
	3.2	ESD protections
	3.3	Recommended operating conditions 8
	3.4	Thermal data 8
4	Elect	trical characteristics9
5	Pin c	lescription
6	Devi	ce description
	6.1	UVLO and thermal protections
		6.1.1 UVLO on supply voltages
		6.1.2 Thermal protection
	6.2	DC/DC buck regulator
		External optional 3.3 V supply voltage
	6.3	Linear regulator
	6.4	Standby mode
	6.5	Gate drivers 24
	6.6	Microcontroller unit
		6.6.1 Memories and boot mode
		6.6.2 Power management
		6.6.3 High-speed external clock source
		6.6.4 Advanced-control timer (TIM1)
	6.7	Test mode
	6.8	Operational amplifiers
	6.9	Comparator
	6.10	3FG_PA7 output function
	6.11	ESD protection strategy

STSPIN32F0		Contents
7	Application example	34
8	Package information	36
	8.1 VFQFPN48 7 x 7 package information	37
9	Ordering information	39
10	Revision history	39

Description STSPIN32F0

1 Description

The STSPIN32F0 is a System-In-Package providing an integrated solution suitable for driving three-phase BLDC motors using different driving modes.

It embeds a triple half-bridge gate driver able to drive power MOSFETs or IGBTs with a current capability of 600 mA (sink and source). The high- and low-side switches of same half-bridge cannot be simultaneously driven high thanks to an integrated interlocking function.

An internal DC/DC buck converter provides the 3.3 V voltage suitable to supply both the MCU and external components. An internal LDO linear regulator provides the supply voltage for gate drivers.

The integrated operational amplifiers are available for the signal conditioning of the analog Hall-effect sensors and the shunt resistor signal.

A comparator with a programmable threshold is integrated to perform the overcurrent protection.

The integrated MCU (STM32F031C6 with extended temperature range, suffix 7 version) allows performing field-oriented control, the 6-step sensorless and other advanced driving algorithm including the speed control loop. It has the write-protection and read-protection feature for the embedded Flash memory to protect against unwanted writing and/or reading.

The STSPIN32F0 device also features overtemperature and undervoltage lockout protections and can be put in the standby mode to reduce the power consumption. The device provides 16 general-purpose I/O ports (GPIO) with the 5 V tolerant capability, one 12-bit analog-to-digital converter with up to 9 channels performing conversions in a single-shot or scan modes, 5 synchronizable general-purpose timers and supports an easy to use debugging serial interface (SWD).

STSPIN32F0 **Block diagrams**

2 **Block diagrams**

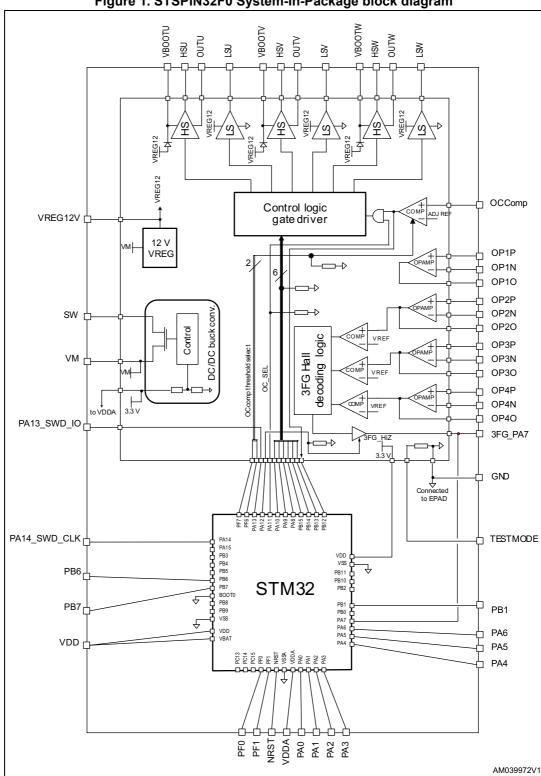


Figure 1. STSPIN32F0 System-In-Package block diagram

Block diagrams STSPIN32F0

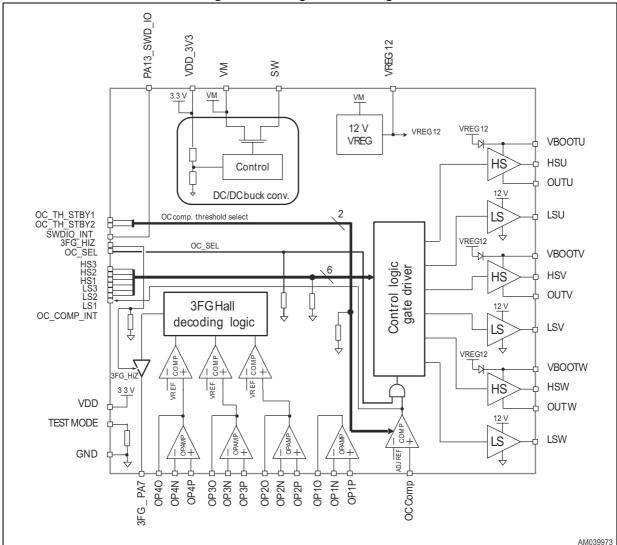


Figure 2. Analog IC block diagram

STSPIN32F0 Electrical data

3 Electrical data

3.1 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 1* may cause permanent damage to the device. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 1. Absolute maximum ratings

Symbol	Parameter	Test condition	Value	Unit
V_{M}	Power supply voltage	-	-0.3 to 48	V
V _{REG12}	Linear regulator output and gate driver supply voltage	r VREG12 15 shorted to VM		٧
V _{OPP}	Op amp positive input voltage	-	-0.2 to V _{DD} +0.2	V
V _{OPN}	Op amp negative input voltage	-	-0.2 to V _{DD} +0.2	V
V _{CP}	Comparator input voltage	-	-2 to 2	V
V _{3FG}	3FG output voltage	-	-0.3 to V _{DD} +0.3	V
I _{3FG}	3FG output sink current	-	8	mA
V _{HS}	High-side gate output voltage	-	V _{OUT} - 0.3 to V _{BOOT} + 0.3	V
V _{LS}	Low-side gate output voltage	-	-0.3 to V _{REG12} + 0.3	V
V _{BOOT}	Bootstrap voltage	voltage - Max. (V _{OUT} - 0.3 or -0.3) min. ('V _{OUT} + V _{REG12} + 0.3' or		٧
V _{OUT}	Output voltage (OUTU, OUTV, OUTW)	-	-2 to V _M + 2	V
dV _{OUT} /dt	Output slew rate	-	± 10	V/ns
. V	MCU logic input voltage	⁽¹⁾ TTa type	-0.3 to 4	V
V_{IO}	Logic input voltage	⁽¹⁾ FT, FTf type	-0.3 to V _{DD} + 4 ⁽²⁾	V
I _{IO}	MCU I/O output current	(1)	-25 to 25	mA
ΣI_{1O}	MCU I/O total output current	(1), (3)	-80 to 80	mA
V_{DD}	MCU digital supply voltage	(1)	-0.3 to 4	V
V_{DDA}	MCU analog supply voltage	(1)	-0.3 to 4	V
T _{stg}	Storage temperature	-	-55 to 150	°C
T _j	Operating junction temperature	-	-40 to 150	°C

^{1.} For details see Table 15 Voltage characteristics in the STM32F031C6 datasheet (suffix 7 version).

^{2.} Valid only if the internal pull-up/pull-down resistors are disabled. If internal the pull-up or pull-down resistor is enabled, the maximum limit is 4 V.

^{3.} If the MCU supply voltage is provided by an integrated DC/DC regulator, the application current consumption is limited at I_{DDA,max} value (see *Table 5*).

Electrical data STSPIN32F0

3.2 ESD protections

Table 2. ESD protection ratings

Symbol	Parameter	Test condition	Class	Value	Unit
НВМ	Human body model	Conforming to ANSI/ESDA/JEDEC JS-001-2014	H2	2	kV
CDM	Charge device model	Conforming to ANSI/ESDA/JEDEC JS-002-2014	C2	750	٧

3.3 Recommended operating conditions

Table 3. Recommended operating conditions

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _M	Power supply voltage	-	8 ⁽¹⁾	-	45	V
dV _M /dt	Power supply voltage slope	V _M = 45 V	-	-	0.75	V/µs
V _{DDA}	DC/DC regulator output voltage	-	-	3.3	-	V
L _{SW}	Output inductance	-	-	22	-	μH
C _{DDA}	Output capacitance	-	47	-	-	μF
ESR _{DDA}	Output capacitor ESR	-	-	-	200	mΩ
V	Linear regulator output and gate	13 < V _M < 45 V	-	12	-	V
V _{REG12}	driver supply voltage	Shorted to VM	8 ⁽¹⁾	-	15	
C _{REG}	Load capacitance	-	1	10	-	μF
ESR _{REG}	ESR load capacitance	-	-	-	1.2	Ω
V _{BO}	Floating supply voltage ⁽²⁾	-	-	V _{REG12} - 1	15	V
V _{CP}	Comparator input voltage	-	0	-	1	V
т	Operating junction temperature	Analog IC	-40	-	125	°C
T _j	Operating junction temperature	MCU ⁽³⁾	-40	-	125	°C

^{1.} UVLO threshold V_{Mon_max}.

3.4 Thermal data

Table 4. Thermal data⁽¹⁾

Symbol	Parameter	Value	Unit
R _{th (JA)}	Thermal resistance junction to ambient	45.6	°C/W

Calculated by simulation with following boundary condition. The 2s2p board as per the std. JEDEC (JESD51-7) in natural convection. Board dimensions: 114.3 x 76.2 x 1.6 mm. Ambient temperature: 25 °C.

^{2.} $V_{BO} = V_{BOOT} - V_{OUT}$.

^{3.} See the STM32F031C6 datasheet (suffix 7 version).

4 Electrical characteristics

Testing conditions: $V_M = 15 \text{ V}$; $V_{DD} = 3.3 \text{ V}$, unless otherwise specified.

Typical values are tested at T_j = 25 °C, minimum and maximum values are guaranteed by thermal characterization in the temperature range of -40 to 125 °C, unless otherwise specified.

Table 5. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Power supp	oly and standby mode					
		V _M = 45 V; V _{DD} = 3.5 V externally supplied	-	2	2.6	mA
I _M	V _M current consumption	Standby PF7 = '0' PF6 = '0 V_M = 45 V; V_{DD} = 3.5 V externally supplied	-	880	1100	μА
V _{MOn}	V _M UVLO turn-on threshold	V _M rising from 0 V	7.0	7.4	7.8	V
V_{MOff}	V _M UVLO turn-off threshold	V _M falling from 8 V	6.7	7.1	7.5	V
V_{MHys}	V _M UVLO threshold hysteresis	-	-	0.3	-	V
		V _{DD} = 3.5 V externally supplied ⁽¹⁾	-	2.5	5	
I _{DD}	V _{DD} current consumption	Standby PF7 = '0' PF6 = '0' V_{DD} = 3.5 V externally supplied ⁽¹⁾	-	2.5	5	mA
		V _{DD} = 3.5 V externally supplied ⁽¹⁾	-	615	750	
I _{DDA}	V _{DDA} current consumption	Standby PF7 = '0' PF6 = '0' V_{DD} = 3.5 V externally supplied ⁽¹⁾	-	80	125	μA
$V_{\rm DDOn}$	V _{DD} UVLO turn-on threshold	V _{DD} rising from 0 V	2.5	2.65	2.8	V
V_{DDOff}	V _{DD} UVLO turn-off threshold	V _{DD} falling from 3.3 V	2.2	2.35	2.5	V
V _{DDHys}	V _{DD} UVLO threshold hysteresis	-	-	0.3	-	V
1	V surrent consumption	V _{REG} = 13 V externally supplied, V _M = 45 V; no commutation	-	800	1200	
I _{REG12}	V _{REG} current consumption	Standby PF7 = '0' PF6 = '0' V _{REG} = 13 V externally supplied	-	800	1200	μA
V _{REG12On}	V _{REG12} UVLO turn-on threshold	V _{REG12} rising from 0 V	6.7	7.1	7.5	V
V _{REG12Off}	V _{REG12} UVLO turn-off threshold	V _{REG12} falling from 8 V	6.4	6.8	7.2	٧
V _{REG12Hys}	V _{REG12} UVLO threshold hysteresis	-	-	0.25	-	V
I _{BOOT}	V _{BO} current consumption	HS on V _{BO} = 13 V	-	200	290	μΑ
V_{BOOn}	V _{BO} UVLO turn-on threshold	V _{BO} rising from 0 V	5.7	6.1	6.5	V

Electrical characteristics STSPIN32F0

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V_{BOOff}	V _{BO} UVLO turn-off threshold	V _{BO} falling from 8 V	5.4	5.8	6.2	V
V _{BOHys}	V _{BO} UVLO threshold hysteresis	-	-	0.25	-	V
t _{sleep}	Standby set time	-	-	-	1	μs
DC/DC swit	ching regulator					
V _M	Input supply voltage	-	8 ⁽²⁾	-	45	V
V _{PWR_OK}	Power good voltage	-	5.6	6	6.4	V
V_{DDA}	Average output voltage	(3)	3.09	3.3	3.5	V
I _{DDA}	Output current	DC; MCU current consumption included	-	-	70	mA
f _{SW}	Maximum SW switching frequency	Open loop, V _{DDA} floating I _{SW} = 100 mA	-	200	330	kHz
R _{SWDS(ON)}	Switch ON resistance	I _{SW} = 200 mA	-	1.4	-	Ω
η	Efficiency	$V_{M} = 8 \text{ V}; I_{DDA} = I_{DDA,max}^{(3)}$	-	80	-	%
I _{SW,peak}	Peak current threshold	-	-	320	-	mA
I _{OVC}	Latched overcurrent threshold	-	-	1	-	Α
t _{SS}	Soft-start time	-	2.5	5	7.5	ms
Linear regu	lator					
V _{REG12}	Linear regulator output and gate driver supply voltage	V _M = 13 ÷ 45 V I _O = 10 mA ⁽⁴⁾	11.4	12	12.6	V
V _{REG12,drop}	Drop voltage	V _M = 8 ÷ 11 V, I _O = 10 mA	-	200	400	mV
I _{REG12,lim}	Linear regulator current limit	V _M = 13 V	20	-	40	mA
Gate drivers	S					
I _{SI}	Maximum sink/source current	T _J = 25 °C	400	600	-	mA
I _{SO}	capabilities	Full temperature range	350	-	-	mA
R _{PDin}	Input lines pull-down resistor	-	30	60	95	kΩ
t _{on} t _{off}	Input-to-output propagation delay ⁽⁵⁾	-	10	20	40	ns
MT	Delay matching, HS and LS turn-on/off ⁽⁶⁾	-	-	10	20	ns
R _{DS_diode}	Bootstrap diode ON resistance	-	-	120	240	Ω

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Operationa	l amplifiers	1				l
V _{OPio} V _{icm}	Input common mode voltage range	-	-0.1	-	V _{DD} + 0.1	V
\	land to effect well a se	V _{out} = 1.65; T _j = 25 °C	-	1	6	mV
V_{OPio}	Input offset voltage	V _{out} = 1.65; full temp. range	-	-	7	mV
I _{OPio}	Input offset current	V _{out} = 1.65 ⁽⁷⁾	-	-	100	pА
I _{OPib}	Input bias current	(7)	-	-	100	pА
CMRR	Common mode rejection ratio	0 to 3.3 V; V _{out} = 1.65 V	70	90	-	dB
A _{OL}	Open loop gain	$R_L = 10 \text{ k}\Omega; V_{\text{out}} = 1.65$	-	90	-	dB
V _{DD} - V _{OH}	High level output voltage	$R_L = 10 \text{ k}\Omega^{(8)}$	-	15	40	mV
V _{OL}	Low level output voltage	$R_L = 10 \text{ k}\Omega^{(8)}$	-	15	40	mV
		$V_{out} = 3.3 \text{ V}; T_j = 25 ^{\circ}\text{C}$	18	-	-	mA
	Sink output current	V _{out} = 3.3 V; full temp. range	16	-	-	
I _{OUT}	Source output current	V _{out} = 0 V; T _i = 25 °C	18	-	-	mA
		V _{out} = 0 V; full temp. range	16	-	-	
GBP	Gain bandwidth product	$R_L = 2 \text{ k}\Omega; C_L = 100 \text{ pF}$ $V_{\text{out}} = 1.65$	10	18	-	MHz
Gain	Minimum gain for stability	Phase margin = 45° 0.2 V < V _{out} < V _{DD} - 0.2	-	4	-	V/V
SR	Slew rate	R_L = 2 kΩ; C_L = 100 pF V_{in} 1 to 2 V step	-	10	-	V/µs
OC compar	ator				•	I.
		PF6 = '0' PF7 = '1'	90	-	120	mV
OC_{th}	Overcurrent threshold	PF6 = '1' PF7 =' 0'	235	255	275	mV
		PF6 = '1' PF7 = '1'	465	505	545	mV
t _{CPD}	Comparator propagation delay	OC _{th} = 0.5 V; OC_Comp: voltage step from 0 to 1 V	-	80	120	ns
t _{OCdeglitch}	Comparator input deglitch filter time	(9)	35	50	-	ns
t _{OCrelease}	Minimum overcurrent latch release pulse width	(9)	-	-	20	ns
3FG circuit	ry	•	•	ı	•	
V _{ref}	3FG comparators reference voltage	V _{DD} = 3.3 V	1.55	V _{DD} /2	1.75	V
t _{3FGD}	3FG comparator propagation delay	PA12 = '1' ⁽¹⁰⁾	-	50	80	ns
V _{3FGL}	Low level 3FG output	I _{sink} = 8 mA	-	0.2	0.4	V
	I .	1		l		l .

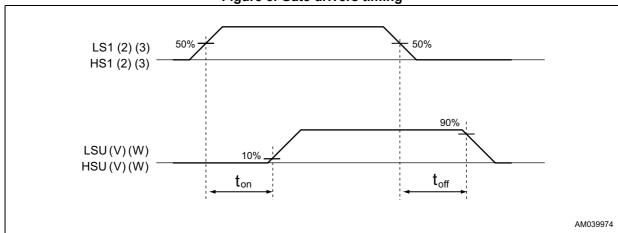

Electrical characteristics STSPIN32F0

Table 5	Flectrical	characteristics	(continued)
I abic o.	Licciicai	Citalacteristics	10011tillaca,

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Thermal protection						
T _{SD}	Thermal shut-down temperature	-	130	140	150	°C
T _{hys}	Thermal shut-down hysteresis	-	20	30	40	°C

- 1. The current consumption depends on the firmware loaded in the microcontroller.
- 2. UVLO threshold V_{Mon_max} .
- 3. Using the 47 μ F capacitor (APXG250ARA470MF61G), 22 μ H inductor (MLF1608C220KTA00), and diode 1N4448TR.
- 4. With 11 < V_M < 13 V the linear output voltage can be VREG12 or 'VM-VREG12,drop' depending on the linear regulator is already turned-on or not.
- 5. Figure 3.
- $6. \quad \mathsf{MT} = \mathsf{max}. \; (|\mathsf{t}_{\mathsf{on}(\mathsf{LVG})} \mathsf{t}_{\mathsf{off}(\mathsf{LVG})}|, \; |\mathsf{t}_{\mathsf{on}(\mathsf{HVG})} \mathsf{t}_{\mathsf{off}(\mathsf{HVG})}|, \; |\mathsf{t}_{\mathsf{off}(\mathsf{LVG})} \mathsf{t}_{\mathsf{on}(\mathsf{HVG})}|, \; |\mathsf{t}_{\mathsf{off}(\mathsf{HVG})} \mathsf{t}_{\mathsf{on}(\mathsf{LVG})}|).$
- 7. Guaranteed by design.
- 8. Guaranteed by I_{OUT} test.
- 9. See Figure 16 on page 31.
- 10. 3FG circuitry enabled. The parameter is measured on the active open-drain edge (falling edge).

Figure 3. Gate drivers timing

STSPIN32F0 Pin description

5 Pin description

PA14_SWD_CLK PA13_SWD_IO PB7 PB6 37 39 38 OP4P 36 LSU EPAD 35 OP4N VBOOTU OP4O OUTU PF0 33 HSU PF1 LSV VREG12 VBOOTV **NRST** OUTV VMHSV SW 28 LSW VDDA VBOOTW 26 OUTW PA0 PA1 12 25 HSW OP10 OP1P OP1N 3FG_PA7 PB1 TESTMODE OC_Comp PA5 PA6 AM039975

Figure 4. STSPIN32F0 SiP pin connection (top view)

Table 6. STSPIN32F0 SiP pin description (1)

No.	Name	Туре	Function
1	OP4P	Analog in	Op amp 4 non-inverting input
2	OP4N	Analog in	Op amp 4 inverting input
3	OP4O	Analog out	Op amp 4 output
4	PF0	Digital in	MCU PF0
5	PF1	Digital in	MCU PF1
6	VREG12	Power	12 V linear regulator output
7	NRST	Digital in	MCU reset pin

Pin description STSPIN32F0

Table 6. STSPIN32F0 SiP pin description (continued)⁽¹⁾

No.	Name	Туре	Function	
8	VM	Power	Power supply voltage (bus voltage)	
9	SW	Analog out	3.3 V DC/DC buck regulator switching node	
10	VDDA	Power	MCU analog power supply voltage	
11	PA0	Analog in	MCU PA0	
12	PA1	Analog in	MCU PA1	
13	PA2	Analog in	MCU PA2	
14	PA3	Analog in	MCU PA3	
15	PA4	Analog in	MCU PA4	
16	PA5	Analog in	MCU PA5	
17	PA6	Digital In	MCU PA6	
18	3FG_PA7	Digital I/O	3FG open-drain output or MCU PA7	
19	PB1	Analog in	MCU PB1	
20	TESTMODE	Digital In	Test mode input	
21	OP1O	Analog out	Op amp 1 output	
22	OP1N	Analog in	Op amp 1 inverting input	
23	OP1P	Analog in	Op amp 1 non-inverting input	
24	OC_Comp	Analog in	Overcurrent comparator input	
25	HSW	Analog out	W phase high-side driver output	
26	OUTW	Power	W phase high-side (floating) common voltage	
27	VBOOTW	Power	W phase bootstrap supply voltage	
28	LSW	Analog out	W phase low-side driver output	
29	HSV	Analog out	V phase high-side driver output	
30	OUTV	Power	V phase high-side (floating) common voltage	
31	VBOOTV	Power	V phase bootstrap supply voltage	
32	LSV	Analog out	V phase low-side driver output	
33	HSU	Analog out	U phase high-side driver output	
34	OUTU	Power	U phase high-side (floating) common voltage	
35	VBOOTU	Power	U phase bootstrap supply voltage	
36	LSU	Analog out	U phase low-side driver output	
37	PA13_SWD_IO	Digital I/O	MCU PA13/SWDIO (system debug data via analog IC)	
38	PA14_SWD_CLK	Digital I/O	MCU PA14/SWDCLK (system debug clock)	
39	PB6	Digital I/O	MCU PB6	
40	PB7	Digital in	MCU PB7	
41	OP2P	Analog in	Op amp 2 non-inverting input	
42	OP2N	Analog in	Op amp 2 inverting input	

STSPIN32F0 Pin description

Table 6. STSPIN32F0 SiP pin description (continued)⁽¹⁾

No.	Name	Туре	Function	
43	OP2O	Analog out	Op amp 2 output	
44	GND	Power	Ground	
45	OP3P	Analog in	Op amp 3 non-inverting input	
46	OP3N	Analog in	Op amp 3 inverting input	
47	OP3O	Analog out	Op amp 3 output	
48	VDD	Power	MCU digital power supply	
	EPAD	Power	Internally connected to ground	

^{1.} Refer to *Table 7* for MCU pin functions.

Table 7. STSPIN32F0 MCU pad mapping

MCU pad	Туре	Analog IC pad	Alternate and additional functions
PF0	I/O - FT	-	OSC_IN
PF1	I/O - FT	-	OSC_OUT
NRST	I/O - RST	-	Device reset input / internal reset output (active low)
VDDA	S	VDD_3V3	Analog power supply voltage
PA0	I/O - TTa	-	TIM2_CH1_ETR, USART1_CTS ADC_IN0, RTC_TAMP2, WKUP1
PA1	I/O - TTa	-	TIM2_CH2, EVENTOUT, USART1_RTS ADC_IN1
PA2	I/O - TTa	-	TIM2_CH3, USART1_TX ADC_IN2
PA3	I/O - TTa	-	TIM2_CH4, USART1_RX ADC_IN3
PA4	I/O - TTa	-	SPI1_NSS, I2S1_WS, TIM14_CH1, USART1_CK ADC_IN4
PA5	I/O - TTa	-	SPI1_SCK, I2S1_CK, TIM2_CH1_ETR ADC_IN5
PA6	I/O - TTa	-	SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, EVENTOUT ADC_IN6
PB1	I/O - TTa	-	TIM3_CH4, TIM14_CH1, TIM1_CH3N ADC_IN9
PA7	I/O - TTa	3FGOUT	SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, EVENTOUT ADC_IN7
PB12	I/O - FT	OC_COMP_INT	TIM1_BKIN ⁽¹⁾

Pin description STSPIN32F0

Table 7. STSPIN32F0 MCU pad mapping (continued)

rable 7. GTOI INOZI 6 MGO pad mapping (continued)					
MCU pad	Type	Analog IC pad	Alternate and additional functions		
PB13	I/O - FT	LS1	TIM1_CH1N ⁽¹⁾		
PB14	I/O - FT	LS2	TIM1_CH2N ⁽¹⁾		
PB15	I/O - FT	LS3	TIM1_CH3N ⁽¹⁾		
PA8	I/O - FT	HS1	TIM1_CH1 ⁽¹⁾		
PA9	I/O - FTf	HS2	TIM1_CH2 ⁽¹⁾		
PA10	I/O - FTf	HS3	TIM1_CH3		
PA11	I/O - FT	OC_SEL	Push-pull output ⁽¹⁾		
PA12	I/O - FT	3FG_HIZ	Push-pull output ⁽¹⁾		
PA13_SWD_IO	I/O - FT	SWDIO_INT	IR_OUT, SWDIO		
PF6	I/O - FTf	OC_TH_STBY2	Push-pull output ⁽¹⁾		
PF7	I/O - FTf	OC_TH_STBY1	Push-pull output ⁽¹⁾		
PA14_SWD_CLK	I/O - FT	-	USART1_TX, SWCLK		
PB6	I/O - FTf	-	I2C1_SCL, USART1_TX, TIM16_CH1N		
PB7	I/O - FTf	-	I2C1_SDA, USART1_RX, TIM17_CH1N		
VBAT, VDD	S	VDD	Backup and digital power supply		
VSS, VSSA	S	-	Ground		
воото	I	-	Boot memory selection (internally connected to ground)		
PC13, PC14, PC15, PB0, PB2, PB10, PB11, PA15, PB3, PB4, PB5, PB8, PB9	-	-	Not connected		

The analog IC is designed to support these GPIOs configuration only. Different configuration could cause device malfunctioning. The GPIO input configuration without pull-up or pull-down is always allowed.

Note: Each unused GPIO inside the SiP should be configured in the OUTPUT mode low level after the startup by software.

STSPIN32F0 Pin description

Table 8. STSPIN32F0 analog IC pad description

Pinout name	Pad name	Туре	Function
PA13_SWD_IO	SYS_SWDIO	Digital I/O	System debug data (connected to the output through the analog IC)
VDDA	VDD_3V3	Power	3.3 V DC/DC buck regulator voltage output
VM	VM	Power	Power supply voltage (bus voltage)
SW	SW	Analog out	3.3 V DC/DC buck regulator switching node
VREG12	VREG12	Power	12 V linear regulator output
VBOOTU	VBOOTU	Power	U phase bootstrap supply voltage
HSU	HSU	Analog out	U phase high-side driver output
OUTU	OUTU	Power	U phase high-side (floating) common voltage
LSU	LSU	Analog out	U phase low-side driver output
VBOOTV	VBOOTV	Power	V phase bootstrap supply voltage
HSV	HSV	Analog out	V phase high-side driver output
OUTV	OUTV	Power	V phase high-side (floating) common voltage
LSV	LSV	Analog out	V phase low-side driver output
VBOOTW	VBOOTW	Power	W phase bootstrap supply voltage
HSW	HSW	Analog out	W phase high-side driver output
OUTW	OUTW	Power	W phase high-side (floating) common voltage
LSW	LSW	Analog out	W phase low-side driver output
OC_Comp	OC_COMP	Analog in	Overcurrent comparator input
OP1P	OP1P	Analog out	Op amp 1 output
OP1N	OP1N	Analog in	Op amp 1 inverting input
OP1O	OP1O	Analog in	Op amp 1 non-inverting input
OP2P	OP2P	Analog out	Op amp 2 output
OP2N	OP2N	Analog in	Op amp 2 inverting input
OP2O	OP2O	Analog in	Op amp 2 non-inverting input
OP3P	OP3P	Analog out	Op amp 3 output
OP3N	OP3N	Analog in	Op amp 3 inverting input
OP3O	OP3O	Analog in	Op amp 3 non-inverting input
OP4P	OP4P	Analog out	Op amp 4 output
OP4N	OP4N	Analog in	Op amp 4 inverting input
OP4O	OP4O	Analog in	Op amp 4 non-inverting input
3FG_PA7	3FGOUT	Digital out	3FG output (open-drain)
GND	GND	Power	Ground
TESTMODE	TESTMODE	Digital in	Test mode input
-	VDD	Power	MCU digital power supply

Pin description STSPIN32F0

Table 8. STSPIN32F0 analog IC pad description (continued)

Pinout name	Pad name	Туре	Function
-	OC_COMP_INT	Digital out	OC comparator output
-	HS1	Digital in	High-side input driver U
-	HS2	Digital in	High-side input driver V
-	HS3	Digital in	High-side input driver W
-	LS1	Digital in	Low-side input driver U
-	LS2	Digital in	Low-side input driver V
-	LS3	Digital in	Low-side input driver W
-	OC_SEL	Digital in	OC protection selection
-	3FG_HIZ	Digital in	3FG output enable
-	SWD_IO_INT	Digital in	System debug data (connected to the output through the analog IC)
-	OC_TH_STBY1	Digital in	Overcurrent threshold selection and standby input 1
-	OC_TH_STBY2	Digital in	Overcurrent threshold selection and standby input 2

STSPIN32F0 **Device description**

Device description 6

The STSPIN32F0 is a System-In-Package providing an integrated solution suitable for driving the three-phase BLDC motor with Hall-effect sensors. The device will be developed in the BCD8s (0.18 µm) technology.

6.1 **UVLO** and thermal protections

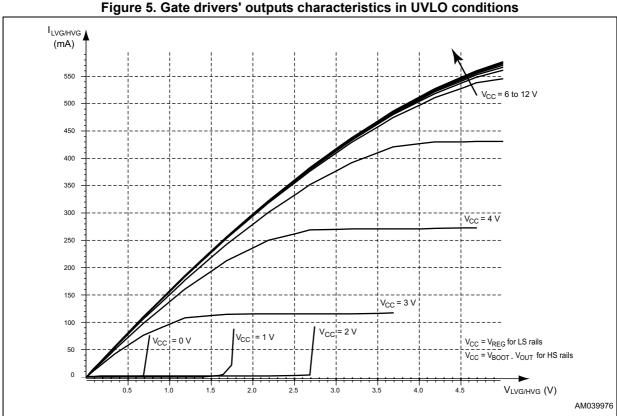

Table 9 summarizes the UVLO and OT protection management.

Table 9. UVLO and OT protection management

Block	V _M UVLO	V _{DD} UVLO	V _{REG12} UVLO	V _{BOOT} UVLO	Lin. Reg OT	DC/DC Reg OT
DC/DC regulator	-	-	-	-	-	OFF
Linear regulator	OFF	OFF	-	-	OFF	-
Op amps and OC comp	OFF	OFF	-	-	-	-
HSU, HSV, HSW output	LOW	LOW	LOW ⁽¹⁾	LOW ⁽¹⁾ , ⁽²⁾	-	-
LSU, LSV, LSW output	LOW	LOW	LOW ⁽¹⁾	-	-	-

^{1.} The N-channel of the gate driver is turned ON with all the available supply voltage, refer to Figure 5.

Only the high-side gate driver in which the UVLO condition is detected (e.g. UVLO on VBOOTU causes the HSU turning off).

Device description STSPIN32F0

6.1.1 UVLO on supply voltages

The STSPIN32F0 device provides UVLO protections on all power supplies.

The device enters into the undervoltage condition when the power supply voltage falls below the off threshold voltage and expires when the motor supply voltage goes over the on threshold voltage.

Table 9 shows the UVLO protection management: which blocks are switched off after an UVLO event.

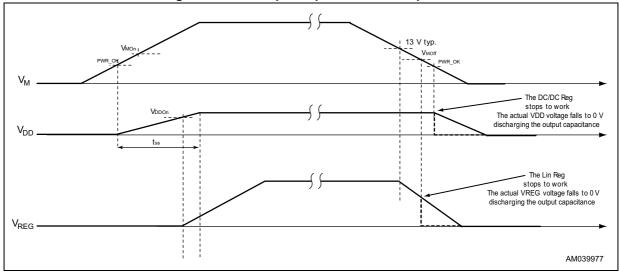


Figure 6. Power-up and power-down sequence

6.1.2 Thermal protection

The device embeds an overtemperature shut-down protection. The thermal sensors are placed next to the DC/DC and linear regulator blocks.

When the OT protection is triggered the correspondent block is switched off, the thermal shut-down condition only expires when the temperature goes below the " T_{SD} - T_{hys} " temperature (auto-restart).

Table 9 shows the thermal protection management which blocks are switched off after an overtemperature event.

6.2 DC/DC buck regulator

The internal DC/DC buck converter provides the 3.3 V supply voltage suitable to supply the MCU and other external devices (e.g. Hall-effect sensors).

The regulator operates in the discontinuous current mode (DCM).

A soft-start function with fixed start-up time is implemented to minimize the inrush current at the start-up, refer to *Figure 8*.

An overcurrent and short-circuit protection is provided.

STSPIN32F0 Device description

If the failure event occurs on the SW pin and the I_{OVC} threshold is reached the regulator is latched off. To restart the DC/DC regulator a power-down and power-up cycle of device supply voltage (V_M) is mandatory.

If the failure event occurs on the regulator output (VDDA pin) and the voltage goes below the UVLO threshold (V_{DDOff}), the regulator restarts with a new soft-start sequence until the OC condition is removed. In this case the current in the coil is limited by $I_{SW,peak}$.

The DC/DC regulator embeds a thermal protection as described in Section 6.1.2.

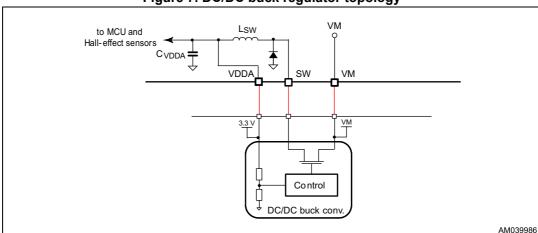
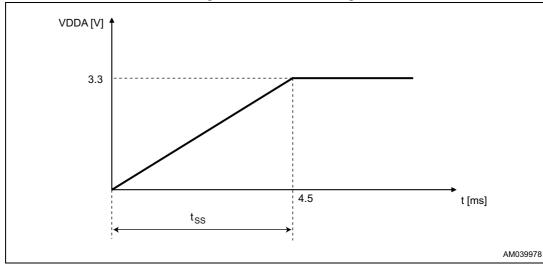
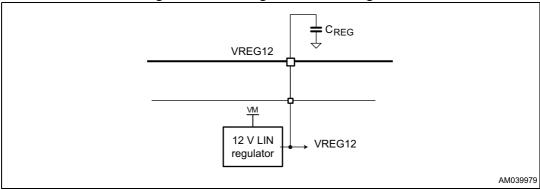



Figure 7. DC/DC buck regulator topology

Device description STSPIN32F0

External optional 3.3 V supply voltage

It is possible provide externally the 3.3 V supply voltage directly on the VDDA pin. In this case, there are two possible configurations:


- 1. The SW pin floating or shorted to VM: in this case the internal power switch of the DC/DC converter continues to switch on/off according to the internal clock
- 2. The SW pin shorted to GND or VDD: in this case the internal power switch detects a short-circuit and it is latched off.

Note: It is not allowed to apply VDD voltage externally in case of VM < VDD.

6.3 Linear regulator

The internal 12 V linear regulator is a LDO regulator providing the supply voltage for the gate drivers section. An external capacitor connected to the VREG12 pin is required.

Figure 9. Linear regulator block diagram

When the VM voltage is below to 12 V, the VM pin and the linear regulator output can be shorted together providing the gate driver supply externally.

The linear regulator embeds a thermal protection as described in Section 6.1.2.

STSPIN32F0 Device description

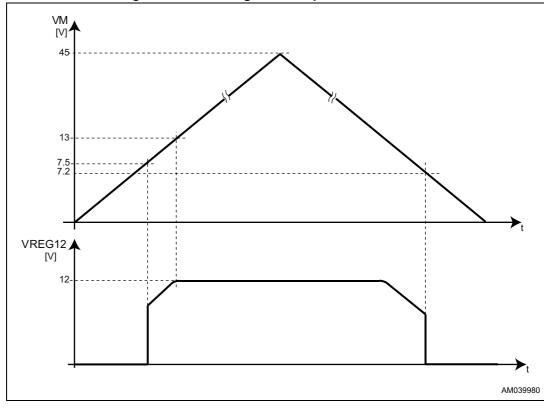


Figure 10. Linear regulator output characteristics

Note:

The linear regulator is designed to supply the internal circuitry only and must not be used to supply external components.

6.4 Standby mode

The device is forced into the standby mode to reduce power consumption forcing both the OC_TH_STBY1 and OC_TH_STBY2 analog IC inputs low (see *Table 12*).

When the standby mode is set the analog IC is put into the low consumption mode after a t_{sleep} time, in particular:

- The linear regulator is switched off
- All the output drivers are forced low (external power switches turned off)
- · Op amps and comparators disabled
- The DC/DC regulator remains operative.

When the device exits from the standby mode a set time is necessary to recover a proper value of the 12 V internal regulator. This set time is strictly dependent by the capacitor connected on the VREG12 pin and can be calculated with *Equation 1*.

Device description STSPIN32F0

Figure 11. "Standby to normal" operation timing ($C_{REG} = 1 \mu F$)

Equation 1

$$t_{REG} = \frac{C_{REG} \times V_{REG12}}{I_{REG12, lim}}$$

6.5 Gate drivers

The STSPIN32F0 device integrates a triple half-bridge gate driver able to drive N-channel power MOSFETs or IGBTs. The high-side section is supplied by a bootstrapped voltage technique with an integrated bootstrap diode.

All the input lines (refer to Figure 2: Analog IC block diagram on page 6) are connected to a pull-down resistor (60 k Ω typical value) to guarantee the low logic level during the device start-up.

The high- and low-side outputs of same half-bridge cannot be simultaneously driven high thanks to an integrated interlocking function.

Note:

All the input lines of the analog IC have an internal pull-down to guarantee the low logic level during the device start-up and when the MCU lines are not present.

STSPIN32F0 Device description

6.6 Microcontroller unit

The integrated MCU is the STM32F031C6 with following main characteristics:

- Core: ARM[®] 32-bit Cortex TM-M0 CPU, frequency up to 48 MHz
- Memories: 4kB of SRAM, 32 kB of Flash memory
- CRC calculation unit
- Up to 16 fast I/Os
- Advanced-control timer dedicated for PWM generation
- Up to 5 general purpose timers
- 12-bit ADC (up to 9 channels)
- Communication interfaces: I²C, USART, SPI
- Serial wire debug (SWD)
- Extended temperature range: -40 to 125 °C

For more details refer to the STM32F031C6 datasheet on www.st.com

6.6.1 Memories and boot mode

The device has the following features:

- 4 Kbytes of the embedded SRAM accessed (read/write) at CPU clock speed with 0
 wait states and featuring embedded parity checking with an exception generation for
 fail-critical applications.
- The non-volatile memory is divided into two arrays:
 - 32 Kbytes of the embedded Flash memory for programs and data
 - Option bytes

The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or the boot in the RAM is selected
- Level 2: chip readout protection, debug features (Cortex-M0 serial wire) and the boot in the RAM selection disabled.

At the startup the boot is made from the main Flash memory due to the BOOT0 MCU input internally connected to ground (see *Table 7 on page 15*). The main Flash memory is aliased in the boot memory space (0x00000000), but still accessible from its original memory space (0x08000000). In other words, the Flash memory contents can be accessed starting from the address 0x00000000 or 0x08000000.

The embedded boot loader is located in the system memory, programmed by ST during production.

Device description STSPIN32F0

6.6.2 Power management

The VDD pin is the power supply for the I/Os and the internal regulator.

The VDDA pin is the power supply for the ADC, reset blocks, RCs and PLL. The V_{DDA} voltage can be generated through the internal DC/DC buck converter, otherwise it is possible to provide externally the supply voltage directly on the VDDA pin.

Note: The VDDA voltage level must be always greater or equal to the VDD voltage level and must be established first.

The MCU has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in the reset mode when the monitored supply voltage is below a specified threshold.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

The MCU supports three low-power modes to achieve the best compromise between low-power consumption, short start-up time and available wake-up sources:

Sleep mode

In the sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake-up the CPU when an interrupt/event occurs.

Stop mode

The stop mode achieves very low-power consumption while retaining the content of the SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in the normal or in the low-power mode.

The device can be woken-up from the stop mode by any of the EXTI lines (one of the 16 external lines, the PVD output, RTC, I²C1 or USART1).

Standby mode

The standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering the standby mode, SRAM and register contents are lost except for registers in the RTC domain and standby circuitry.

The device exits the standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC event occurs.

26/40 DocID029806 Rev 2

STSPIN32F0 Device description

6.6.3 High-speed external clock source

The high-speed external (HSE) clock can be generated from the external clock signal or supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator (see *Figure 13*).

The external clock signal has to respect the I/O characteristics and follows the recommended clock input waveform (refer to *Figure 12*).

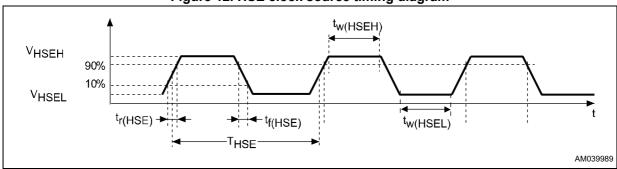
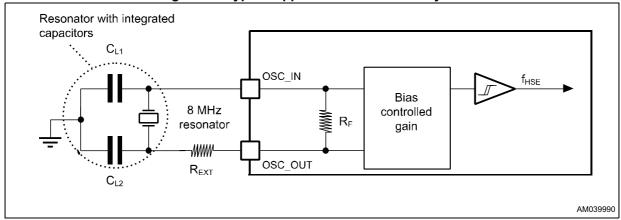



Figure 12. HSE clock source timing diagram

Figure 13. Typical application with 8 MHz crystal

In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. The R_{EXT} value depends on the crystal characteristics (refer to the crystal resonator manufacturer for more details on them).

Device description STSPIN32F0

6.6.4 Advanced-control timer (TIM1)

PA10

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted deadtimes.

This timer is used to generate the PWM signal for the three half-bridge gate drivers as shown in *Table 10*.

MCU I/O **Analog IC input** TIM1 channel TIM1 CH1N PB13 LS1 PB14 LS2 TIM1 CH2N PB15 LS3 TIM1_CH3N PA8 HS1 TIM1 CH1 PA9 HS2 TIM1_CH2

HS3

Table 10. TIM1 channel configuration

6.7 Test mode

A dedicated pin TESTMODE is available to enter into the test mode.

Note: In the application, the TESTMODE pin should be shorted to GND in order not to enter the test mode inadvertently.

TIM1_CH3

STSPIN32F0 Device description

6.8 Operational amplifiers

The device integrates four rail-to-rail operational amplifiers suitable for signal conditioning, in particular for analog Hall-effect sensors decoding and current sensing.

The operational amplifiers provide a rail-to-rail output stage with fast recovery in the saturation condition. The output stage saturation happens in linear applications when a high amplitude input signal occurs and causes the output of the operational amplifier to move outside its real capabilities.

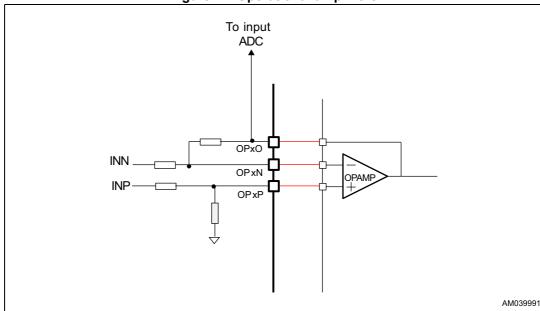


Figure 14. Operational amplifiers

6.9 Comparator

A comparator is available to perform an overcurrent protection. The OC Comp pin can be connected to the shunt resistor to monitor the load current, the internal OC threshold can be set via MCU (PF6 and PF7 port, see *Table 12*).

When an OC event is triggered, the OC comparator output signals the OC event to the PB12 input of the MCU (BKIN).

Depending on the status of the OC_SEL signal (see *Table 11*) the OC event is acting directly on the control logic of the gate driver switching off all high-side gate outputs, and consequently the external high-side power switches.

Device description STSPIN32F0

Figure 15. Comparator

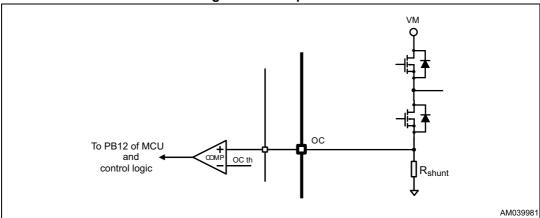


Table 11. OC protection selection

OC_SEL (PA11)	Function	
0	OC comparator output signal is visible only to MCU (default)	
1	OC comparator output signal is visible to MCU and also acts on gate driver control logic	

Table 12. OC threshold values

OC_TH_STBY2 (PF6)	OC_TH_STBY1 (PF7)	OC threshold [mV]	Note
0	0	N.A.	Standby mode (see Section 6.4 on page 23)
0	1	100	-
1	0	250	-
1	1	500	-

When the overcurrent condition disappears, the latched overcurrent signal is released only after all the high-side outputs are kept low for at least $t_{OCrelease}$ time. (Refer to *Figure 16*).

30/40 DocID029806 Rev 2

STSPIN32F0 Device description

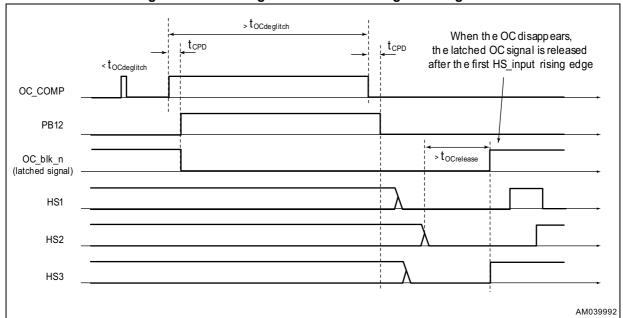


Figure 16. Driver logic overcurrent management signals

6.10 3FG_PA7 output function

The 3FG_PA7 pin has a different function according to Table 13.

 3FG High Z (PA12)
 3FG_PA7
 Note

 0
 PA7
 Default

 1
 3FG
 The MCU pin must be configured with pull-up

Table 13. 3FG_PA7 pin function

When the 3FG function is selected the 3FG_PA7 pin works as the open-drain output (see *Figure 17*). The 3FG signal is synthesized from the Hall-effect sensors feedback applied to the op amp inputs.

The analog output of the op amp is converted into a logic signal through internal comparators ($V_{ref} = VDD/2$) and provided to Hall decoding logic.

The 3FG resulting output signal is an exclusive-OR function of the three Hall sensors (see *Table 14*).

Device description STSPIN32F0

OP2P PAM P2 OP2N OP2O 3FGHall decoding logic VREF OP3P Hall effect sensors feedback OP3N <u>Ф</u>м Р3 OP3O VREF OP4P (OM P4 OP4N VREF OP4O 3FG_PA7 3FG_HiZ 3FG_HIZ from PA12 of MCU to PA7 of MCU AM039982

Figure 17. 3FG circuitry

Table 14. 3FG output truth table (refer to Figure 17)

		<u> </u>	<u>, </u>
COMP4 output	COMP3 output	COMP2 output	3FG pin (PA7)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

STSPIN32F0 Device description

6.11 ESD protection strategy

VDD(3.3 V) Digital I/O Analog I/O GND VM (45 VMAX.) **VBOOT** Linear reg. POWER POWER - POWER HVU/V/W ESD active clamp A POWER REG POWER High-side driver (X3) LVU/V/W ESD active clamp ESD active clamp POWER **GND** Low-side driver (X3) BELOW GND AM039983

Figure 18. ESD protection strategy

Application example STSPIN32F0

7 Application example

Figure 19 shows an application example using the STSPIN32F0 device to drive a three-phase motor with single shunt configuration and analog Hall-effect sensors feedback. The others features implemented are:

- VDD (3.3 V) power supply internally generated via DC/DC regulator
- VREG12 (12 V) power supply internally generated via LDO linear regulator
- I²C serial interface (PB6 and PB7)
- Serial wire debug ports (PA13_SWD_IO, PA14_SWD_CLK)
- Ready and alarm lines (PF0, PF1)
- · Reset dedicated pin
- Overcurrent protection using internal comparator
- Current sensing using internal operation amplifier (op amp 1) and ADC (PA3)
- 3FG generation using internal op amps, comparators and Hall decoding logic circuitry (op amp2, 3, 4 and relative comparators)
- Hall-effect sensors feedback management with op amps and ADC (op amp2, 3, 4 and PA0, PA1, PA2)
- Bus voltage compensation using internal ADC (PA4)
- Application temperature monitoring using internal ADC (PB1)

|||-| **Ⅱ** VBOOTW HSW OUTW VBOOTU HSU OUTU VBOOTV HSV OUTV ďΗ VREG12 OP1P OP1N +OP10 OP2P OP2N OP2O OP3P SW OP3N OP3O STSPIN32F0 OP4P OP4N SWDIO PA13 SWDCLK PA14 3FG_PA7F0 GND 99 РВ6 I²C clock TEST MODE I²C data PB1 |||-| PA6 PA5 PA4 Current feedback from OP10 outputs RESET AM039984

Figure 19. Application example

Package information STSPIN32F0

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

A customized VFQFPN48 7 x 7 package is proposed. A smaller EPAD, internally connected to the ground pin, is desired to place through holes on the bottom of the package.

Lead plating is Nickel/Palladium/Gold (Ni/Pd/Au).

STSPIN32F0 Package information

8.1 VFQFPN48 7 x 7 package information

Figure 20. VFQFPN48 7 x 7 x 1.0 - 48L, pitch 0.5 package outline **TOP VIEW** //0.10C DETAIL A SIDE VIEW Ċ 0.75mm **BOTTOM VIEV** E2 -D2 Terminal Length **DETAIL A** Terminal Thickness 0.05 Ref. SLP1 PLATED AREA

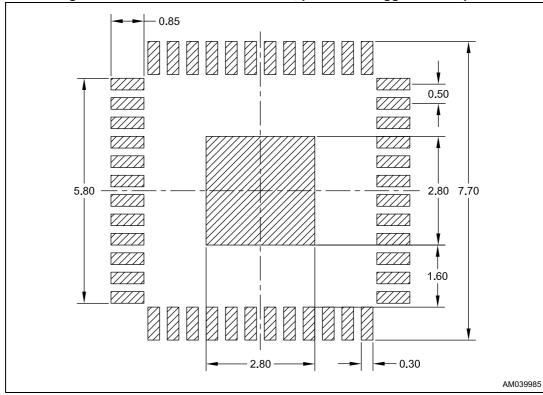

Package information STSPIN32F0

Table 15. VFQFPN48 7 x 7 x 1.0 - 48L, pitch 0.5 - package mechanical data⁽¹⁾

Symbol	Dimensions (mm)			
Symbol	Min.	Тур.	Max.	
А	0.90	0.95	1.00	
A1	0.0	-	0.05	
A2		0.75		
A3		0.203		
b	0.20	0.25	0.30	
D	6.90	7.00	7.10	
E	6.90	7.00	7.10	
е		0.50	•	
D2	2.50	2.60	2.70	
E2	2.50	2.60	2.70	
К		1.80	•	
L	0.30	0.40	0.50	

^{1.} PIN44 is fuse to DAP.

Figure 21. VFQFPN48 7 x 7 x 1.0 - 48L, pitch 0.5 - suggested footprint

38/40 DocID029806 Rev 2

9 Ordering information

Table 16. Order codes

Order code	Package	Packaging
STSPIN32F0	VFQFPN 7 x 7 x 1.0 - 48L	Tray
STSPIN32F0TR	VFQFPN 7 x 7 x 1.0 - 48L	Tape and reel

10 Revision history

Table 17. Document revision history

Date	Revision	Changes
30-Sep-2016	1	Initial release.
30-Mar-2017	2	Replaced STM32F031x6x7 by STM32F031C6 (with extended temperature range, suffix 7 version) in the whole document. Updated <i>Figure 1 on page 5</i> (replaced by new figure). Minor modifications throughout document.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Motor/Motion/Ignition Controllers & Drivers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 LV8281VR-TLM-H BA5839FP-E2 IRAM236-1067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B STK672-630CN-E TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVB54 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 MSVTA120 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW45-14-5 MSVGW54-14-4 STK984-091A-E MP6519GQ-Z LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 NCP81382MNTXG TDA21801 LB11851FA-BH NCV70627DQ001R2G