High voltage fast-switching NPN power transistor

Features

- High voltage capability
- Minimum lot-to-lot spread for reliable operation
- Very high switching speed

Applications

- Electronic ballast for fluorescent lighting
- Flyback and forward single transistor low power converters

Description

The device is manufactured using high voltage multi-epitaxial planar technology for high switching speeds and medium voltage capability.

It uses a cellular emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.
The device is designed for use in lighting applications and low cost switch-mode power supplies.

Table 1. Device summary

Order code	Marking	Package	Packaging
STT13005FP	T13005FP	SOT-32FP	Bag

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CES}}$	Collector-emitter voltage $\left(\mathrm{V}_{\mathrm{BE}}=0\right)$	700	V
$\mathrm{~V}_{\mathrm{CEO}}$	Collector-emitter voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	400	V
$\mathrm{~V}_{\mathrm{EBO}}$	Emitter-base voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	9	V
I_{C}	Collector current	2	A
I_{CM}	Collector peak current $\left(\mathrm{t}_{\mathrm{P}}<5 \mathrm{~ms}\right)$	4	A
I_{B}	Base current	1	A
I_{BM}	Base peak current $\left(\mathrm{t}_{\mathrm{P}}<5 \mathrm{~ms}\right)$	2	A
$\mathrm{P}_{\text {tot }}$	Total dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	30	W
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{J}	Max. operating junction temperature	150	${ }^{\circ} \mathrm{C}$

Table 3. Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\text {thJc }}$	Thermal resistance junction-case \max	4.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

2 Electrical characteristics

$\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\text {CES }}$	Collector cut-off current $\left(V_{B E}=0\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=700 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=700 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$I_{\text {cee }}$	Collector cut-off current $\left(I_{B}=0\right)$	$\mathrm{V}_{\mathrm{CE}}=400 \mathrm{~V}$			250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {EBO }}$	Emitter-base voltage $\left(I_{C}=0\right)$	$\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}$	9			V
$\mathrm{V}_{\text {CEO(sus) }}{ }^{(1)}$	Collector-emitter sustaining voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	400			V
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}{ }^{(1)}$	Collector-emitter saturation voltage	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=125 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{C}}=0.8 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{~A} \\ \mathrm{I}_{\mathrm{C}}=1.6 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~A} \end{array}$			$\begin{gathered} 0.5 \\ 1 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$V_{B E(\text { sat })}{ }^{(1)}$	Base-emitter saturation voltage	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=125 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{C}}=0.8 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{~A} \\ \mathrm{I}_{\mathrm{C}}=1.6 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~A} \end{array}$			$\begin{gathered} 1 \\ 1.3 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{h}_{\text {FE }}{ }^{(1)}$	DC current gain	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A} & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A} & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{array}$	$\begin{gathered} 10 \\ 8 \end{gathered}$		50	
	Resistive load Rise time Storage time Fall time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} \quad \mathrm{~V}_{\mathrm{CC}}=125 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=0.2 \mathrm{~A} \end{aligned}$		$\begin{gathered} 0.4 \\ 3.2 \\ 0.25 \end{gathered}$	$\begin{aligned} & 0.7 \\ & 4.5 \\ & 0.4 \end{aligned}$	
t_{s} t_{f}	Inductive load Storage time Fall time	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} & \mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{BE} \text { (off) }}=-5 \mathrm{~V} & \mathrm{~L}=50 \mathrm{mH} \\ \mathrm{~V}_{\text {Clamp }}=300 \mathrm{~V} & \end{array}$		$\begin{gathered} 0.8 \\ 0.16 \end{gathered}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$

1. Pulse test: pulse duration $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$

2.1 Electrical characteristics (curves)

Figure 3. Derating curve

Figure 2. Safe operating area

Figure 4. $\quad \mathrm{DC}$ current gain $\left(\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}\right)$

Figure 5. DC current gain $\left(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}\right)$

Figure 6. Collector-emitter saturation voltage

Figure 7. Base-emitter saturation voltage

Figure 8. Inductive load fall time

Figure 10. Resistive load fall time

Figure 9. Inductive load storage time

Figure 11. Resistive load storage time

Figure 12. Reverse biased SOA

2.2 Test circuits

Figure 13. Resistive load switching test circuit

1. Fast electronic switch
2. Non-inductive resistor

Figure 14. Inductive load switching test circuit

1. Fast electronic switch
2. Non-inductive resistor
3. Fast recovery rectifier

3 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

SOT-32FP mechanical data			
DIM.	mm.		
	MIN.	TYP	MAX.
A	3.00		3.40
A1	1.80		2.20
b	0.66		0.86
b1	1.17		1.37
c	0.45		0.60
D	7.80		8.20
E	10.80		11.20
e		2.28	(
e1	4.46		4.66
L	15.30		15.70
L1	1.30		1.50
P	4.04		4.24
${ }^{\circ}$	2.90	,	3.10
ø2	3.10		3.30

4 Revision history

Table 5. Document revision history

Date	Revision	Changes
06-May-2009	1	Initial release
10-Sep-2009	2	Document status promoted from preliminary data to datasheet

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G
NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-
TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC4731T-AY 2SC5488A-TL-H
2SD2150T100R SP000011176 FJPF5304DTU FMC5AT148 FMMTA92QTA 2N2369ADCSM 2SB1202S-TL-E 2SB1324-TD-E
2SC2412KT146S 2SC3332T 2SC3902S 2SC4618TLN 2SC5231C8-TL-E 2SC5490A-TL-H 2SD1685F 2SD1816S-TL-E 2SD1816T-TL-E
CMXT2207 TR CPH6501-TL-E MCH4021-TL-E TTC012(Q) BULD128DT4 US6T6TR

