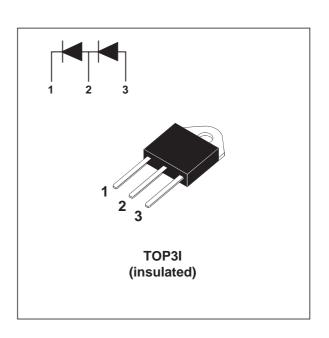


STTH1506TPI


Tandem 600V Hyperfast Rectifer

MAJOR PRODUCTS CHARACTERISTICS

I _{F(AV)}	15 A
V _{RRM}	600 V (in series)
Tj (max)	150 °C
V _F (max)	2.6 V
I _{RM} (typ.)	4.8 A

FEATURES AND BENEFITS

- Especially suited as boost diode in continuous mode power factor correctors and hard switching conditions.
- Designed for high di/dt operation. Hyperfast recovery current to compete with GaAs devices. Allows downsizing of mosfet and heatsinks.
- Internal ceramic insulated devices with equal thermal conditions for both 300V diodes.
- Insulation (2500V RMS) allows placement on same heatsink as mosfet and flexible heatsinking on common or separate heatsink.
- Matched diodes for typical PFC application without need for voltage balance network.
- C = 7pF

DESCRIPTION

The TURBOSWITCH "H" is an ultra high performance diode composed of two 300V dice in series. TURBOSWITCH "H" family drastically cuts losses in the associated MOSFET when run at high dl_F/dt .

ABSOLUTE RATINGS (limiting values for both diodes in series)

Symbol	Parameter	Value	Unit
V _{RRM}	Repetitive peak reverse voltage	600	V
I _{F(RMS)}	RMS forward current	26	А
I _{FSM}	Surge non repetitive forward current	130	А
T _{stg}	Storage temperature range	-65 +150	°C
Tj	Maximum operating junction temperatu	+ 150	°C

TM: TURBOSWITCH is a trademark of STMicroelectronics

May 2002 - Ed: 1A 1/5

THERMAL AND POWER DATA

Symbol	Parameter	Test conditions	Value	Unit
R _{th (j-c)}	Junction to case	Per diode	2.9	°C/W
R _{th (c)}		Coupling	0.3	
R _{th (j-c)}	Junction to case	Total	1.6	
P ₁	Conduction power dissipation for both diodes	$I_{F(AV)} = 15 \text{ A} \delta = 0.5$ Tc = 70°C	50	W

STATIC ELECTRICAL CHARACTERISTICS (for both diodes)

Symbol	Parameter	Tests Conditions		Min.	Тур.	Max.	Unit
I _R *	Reverse leakage cur-	$V_R = V_{RRM}$	Tj = 25°C			20	μΑ
	rent		Tj = 125°C		30	200	
V _F **	Forward voltage drop	I _F = 15 A	Tj = 25°C			3.6	V
			Tj = 125°C		2.1	2.6	

Pulse test: * tp = 5ms, δ < 2% ** tp = 380 μ s, δ < 2%

To evaluate the maximum conduction losses use the following equation: P = 1.8 x $I_{F(AV)}$ + 0.053 x $I_{F}^{2}(RMS)$

RECOVERY CHARACTERISTICS

Symbol	Parameter	Tests Conditions		Min.	Тур.	Max.	Unit
trr	Reverse recovery time	$I_F = 0.5 \text{ A}$ $Irr = 0.25 \text{A}$ $Tj = 25^{\circ}\text{C}$ $I_R = 1 \text{ A}$			16		ns
		$I_F = 1 \text{ A } dI_F/dt = -50 \text{A}/\mu \text{s}$ $V_R = 30 \text{ V}$				35	
I _{RM}	Reverse recovery	V _R = 400 V I _F = 15 A	Tj = 125°C		4.8	6.0	Α
S _{factor}	current	$dI_F/dt = -200 A/\mu s$			0.4		-

TURN-ON SWITCHING CHARACTERISTICS

Symbol	Parameter	$\begin{tabular}{ll} \textbf{Tests Conditions} \\ I_F = 15 \ A \ dI_F/dt = 100 A/\mu s, \\ V_{FR} = 1.1 \ x \ V_F max \\ \end{tabular} Tj = 25 ^{\circ} C$		Min.	Тур.	Max.	Unit
tfr	Forward recovery time					200	ns
V _{FP}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Tj = 25°C			6	V

2/5

Fig. 1: Conduction losses versus average current.

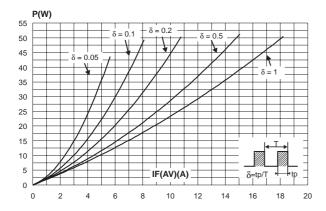
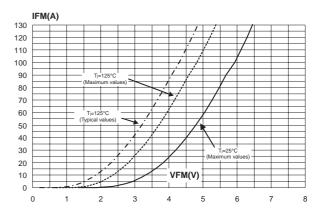



Fig. 2: Forward voltage drop versus forward current.

Fig. 3: Relative variation of thermal impedance junction to case versus pulse duration.

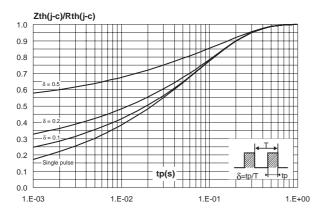


Fig. 4: Peak reverse recovery current versus dI_F/dt (90% confidence).

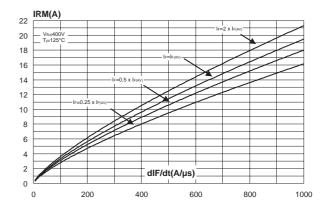
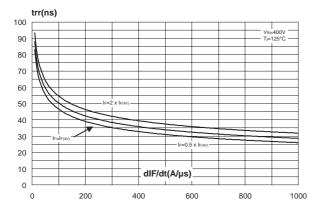
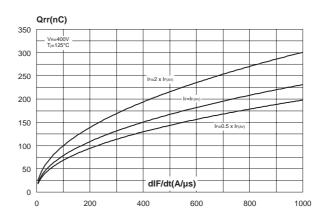




Fig. 5: Reverse recovery time versus dI_F/dt (90% confidence).

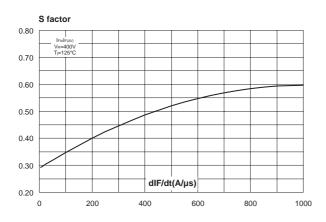
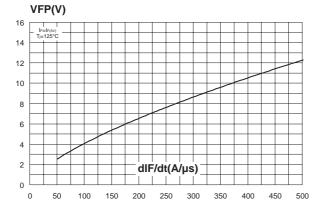
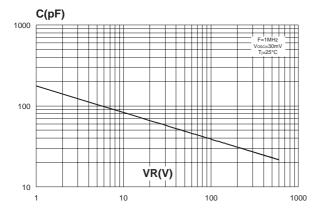
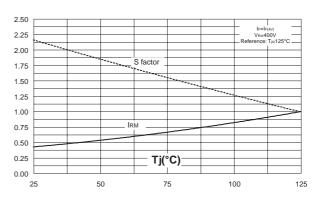


Fig. 6: Reverse recovery charges versus dI_{F/}dt (90% confidence).



57


Fig. 7: Softness factor versus dI_F/dt (typical values).


Fig. 9: Transient peak forward voltage versus dl_F/dt (90% confidence).

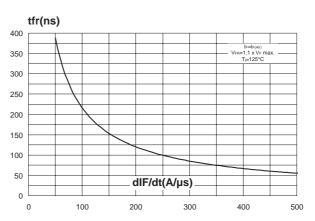

Fig. 11: Junction capacitance versus reverse voltage applied (typical values).

Fig. 8: Relative variations of dynamic parameters versus junction temperature.

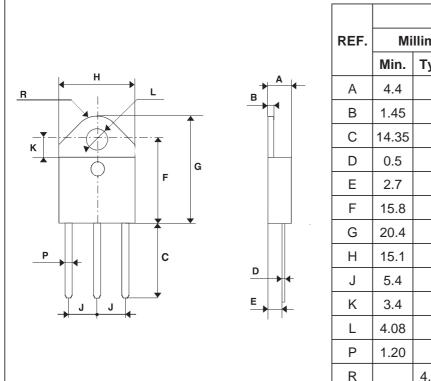


Fig. 10: Forward recovery time versus dI_F/dt (90% confidence).

4/5

PACKAGE MECHANICAL DATA

	DIMENSIONS						
REF.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.4		4.6	0.173		0.181	
В	1.45		1.55	0.057		0.061	
С	14.35		15.60	0.565		0.614	
D	D 0.5 E 2.7		0.7	0.020		0.028	
Е			2.9	0.106		0.114	
F	15.8		16.5	0.622		0.650	
G	20.4		21.1	0.815		0.831	
Н	15.1		15.5	0.594		0.610	
J	5.4		5.65	0.213		0.222	
K	3.4		3.65	0.134		0.144	
L	4.08		4.17	0.161		0.164	
Р	1.20		1.40	0.047		0.055	
R		4.60			0.181		

Ordering code	Marking	Package	Weight	Base qty	Delivery mode
STTH1506TPI	STTH1506TPI	TOP3I	4.46 g.	30	Tube

■ Epoxy meets UL94,V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 $\hbox{@\,}2002$ STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore

Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F
RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G CRS04(T5L,TEMQ) ACGRA4007-HF
ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077
85HFR60 40HFR60 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5850