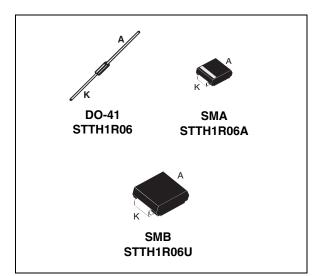


STTH1R06

Turbo 2 ultrafast high voltage rectifier


Features

- Ultrafast switching
- Low reverse recovery current
- Low thermal resistance
- Reduces switching and conduction losses

Description

The STTH1R06, which is using ST Turbo 2 600 V technology, is specially suited as boost diode in power factor correction circuitry.

The device is also intended for use as a free wheeling diode in power supplies and other power switching applications.

Table 1.Device summary

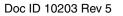
Symbol	Value
I _{F(AV)}	1 A
V _{RRM}	600 V
I _R (max)	75 µA
Тj	175 °C
V _F (typ)	1.0 V
t _{rr} (max)	25 ns

1 Characteristics

Symbol	Param	Value	Unit		
V _{RRM}	Repetitive peak reverse voltage			600	V
1	Forward rms current	DO-41		10	А
IF(RMS) Forward rms current		SMA / SMB		7	A
	I _{F(AV)} Average forward current	DO-41	$T_c = 100 \ ^\circ C \delta = 0.5$		
I _{F(AV)}		SMA	$T_c = 125 \ ^\circ C \delta = 0.5$	1	A
		SMB	$T_c = 135 \ ^\circ C \delta = 0.5$		
	Surge per repetitive ferward surrent	DO-41	t _n = 10ms sinusoidal	25	٨
I _{FSM} Su	Surge non repetitive forward current	20	A		
T _{stg}	Storage temperature range				°C
Тј	Maximum operating junction temperature	175	°C		

Table 2. Absolute ratings (limiting values)

Table 3.Thermal resistance

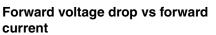

Symbol	Parameter				Unit
		L = 10 mm	DO-41	45	
R _{th(j-l)}	Junction to lead		SMA	30	°C/W
			SMB	25	
R _{th(j-a)}	Junction to ambient ⁽¹⁾	L = 10 mm	DO-41	70	°C/W

1. $R_{th(j-a)}$ is measured with a copper area S = Scm2 (see *Figure 14*).

Table 4. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
	Povorco lookago ourront	T _j = 25 °C	V – V			1	μA
I _R Reverse leakage current	T _j = 150 °C	$V_{R} = V_{RRM}$		10	75	μΑ	
V	Enclosed voltage drop $T_j = 25 \text{ °C}$		1 - 10			1.7	V
V _F F	Forward voltage drop	T _j = 150 °C	I _F = 1A		1.0	1.25	v

To evaluate the conduction losses use the following equation: P = 1.03 x $I_{F(AV)}$ + 0.27 $I_{F}^{2}(RMS)$



Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
+	Reverse recovery	T - 25 °C	$I_F = 0.5A$ $I_{rr} = 0.25A$ $I_R = 1A$ $I_F = 1A$ $dI_F/dt = -50$ $A/\mu s$ $V_R = 30V$			25	ns
time	$T_j = 25^{\circ} C$	$I_F = 1A dI_F/dt = -50 A/\mu s V_R = 30V$		30	45	115	
t _{fr}	Forward recovery time	T _j = 25 °C	$I_F = 1A \qquad dI_F/dt = 100 \text{ A/}\mu\text{s}$ $V_{FR} = 1.1 \text{ x } V_{Fmax}$			100	ns
V_{FP}	Forward recovery voltage	$T_j = 25 \ ^\circ C$	$I_F = 1A dI_F/dt = 100 \text{ A/}\mu\text{s}$ $V_{FR} = 1.1 \text{ x } V_{Fmax}$			10	V

Table 5.Dynamic characteristics

Tj=25°C

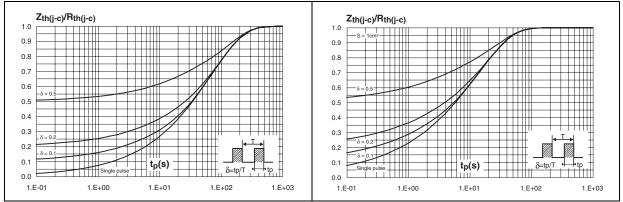

5

Figure 3. Relative variation of thermal impedance junction to case vs pulse duration (DO-41)

Figure 4. Relative variation of thermal

impedance junction to case vs pulse duration (SMA)

Figure 5. Relative variation of thermal impedance junction to case vs pulse duration (SMB)

Figure 6. Peak reverse recovery current vs dl_F/dt (typical values)

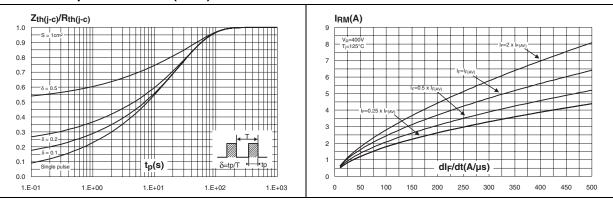


Figure 7. Reverse recovery time versus dl_F/dt Figure 8. (typical values)

Reverse recovery charges versus dl_F/dt (typical values)

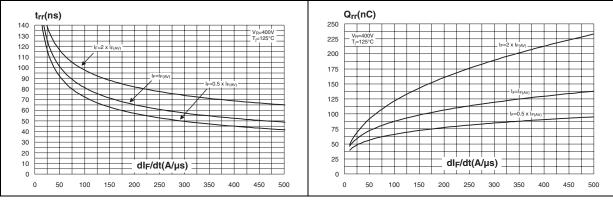
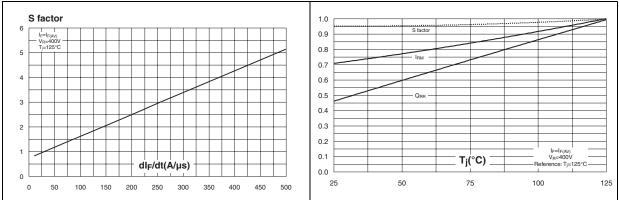



Figure 9. Reverse recovery softness factor vs dl_F/dt (typical values)

Figure 10. Relative variations of dynamic parameters vs junction temperature

Figure 11. Transient peak forward voltage vs Figure 12. Forward recovery time vs dl_F/dt (typical values) (typical values)

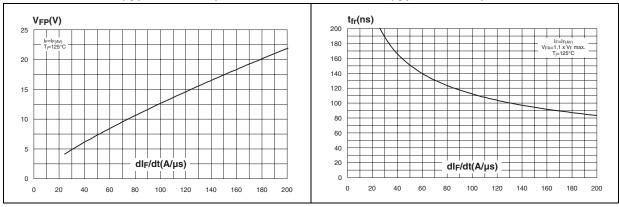
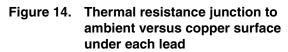



Figure 13. Junction capacitance versus reverse voltage applied (typical values)

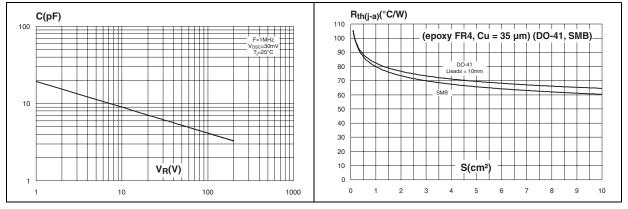
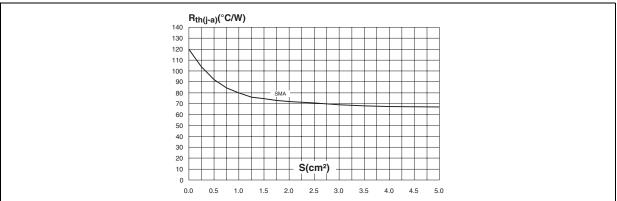



Figure 15. Thermal resistance junction to ambient versus copper surface under each lead (epoxy FR4, Cu = $35 \mu m$) (SMA)

2 Package information

- Epoxy meets UL94, V0
- Lead-free packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

Table 6. SMA dimensions

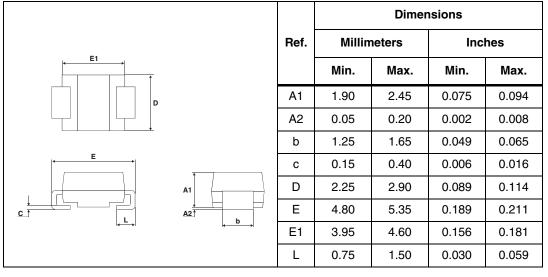
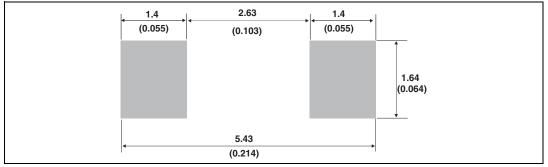
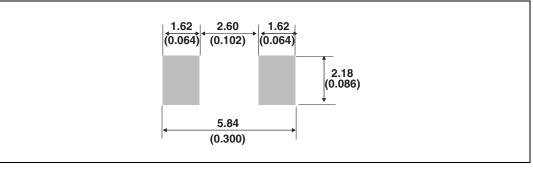



Figure 16. Footprint (dimensions in mm)



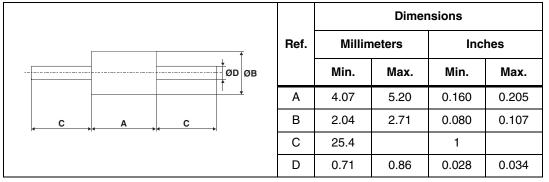

	лі э						
		Ref.	Dimensions				
E1			Millimeters		Inches		
			Min.	Max.	Min.	Max.	
		A1	1.90	2.45	0.075	0.096	
		A2	0.05	0.20	0.002	0.008	
		b	1.95	2.20	0.077	0.087	
		с	0.15	0.40	0.006	0.016	
	A1	E	5.10	5.60	0.201	0.220	
		E1	4.05	4.60	0.159	0.181	
	l ∢ ≽l	D	3.30	3.95	0.130	0.156	
		L	0.75	1.50	0.030	0.059	

Table 7.SMB dimensions

Figure 17. Footprint (dimensions in mm)

Table 8. DO-41 (plastic) dimensions

3 Ordering information

Table 9.Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STTH1R06	STTH1R06	DO-41	0.34 g	2000	Ammopack
STTH1R06RL	STTH1R06	DO-41	0.34 g	5000	Tape and reel
STTH1R06A	HR6	SMA	0.068 g	5000	Tape and reel
STTH1R06U	BR6	SMB	0.11 g	2500	Tape and reel

4 Revision history

Date	Revision	Changes
Apr-2003	1	First issue.
07-Sep-2004	2	DO-41 and SMA packages added.
24-Feb-2005	3	SMA package dimensions update. Reference A1 max. changed from 2.70 mm (0.106 inc.) to 2.03 mm (0.080).
02-Jul-2007	4	Reformatted to current standards. Added cathode bars to cover illustrations. Updated dimensions and footprint illustrations for SMA and SMB packages. Corrected part number in Table 9.
30-Sep-2009	5	Updated table 8 package dimensions.

Table 10. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 10203 Rev 5

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

 70HFR40
 RL252-TP
 150KR30A
 1N5397
 NTE5841
 NTE6038
 SCF5000
 1N4002G
 1N4005-TR
 JANS1N6640US
 481235F

 RRE02VS6SGTR
 067907F
 MS306
 70HF40
 T85HFL60S02
 VS-88-4031
 VS-66-9903
 US2JFL-TP
 A1N5404G-G
 CRS04(T5L,TEMQ)

 ACGRA4007-HF
 ACGRB207-HF
 CLH03(TE16L,Q)
 ACGRC307-HF
 ACEFC304-HF
 NTE6356
 NTE6359
 NTE6002
 NTE6023
 NTE6039

 NTE6077
 85HFR60
 40HFR60
 70HF120
 85HFR80
 D126A45C
 SCF7500
 D251N08B
 SCHJ22.5K
 SM100
 SCPA2
 SCH10000
 SDHD5K

 VS-12FL100S10
 ACGRA4001-HF
 D1821SH45T
 PR
 D1251S45T
 NTE6358