STTH30R06C

Turbo 2 ultrafast high voltage rectifier

Datasheet - production data

Features

- Ultrafast switching
- Low reverse current
- Low thermal resistance
- Reduced switching and conduction losses

Description

This device using ST Turbo 2600 V technology, is specially suited as boost diode in continuous mode power factor corrections and hard switching conditions.
The device is also intended for use as a free wheeling diode in power supplies and other power switching applications.

Table 1: Device summary

Symbol	Value
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$2 \times 15 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{RRM}}$	600 V
I_{RM} (typ.)	8 A
$\mathrm{~T}_{\mathrm{j}}$ (max.)	$175^{\circ} \mathrm{C}$
V_{F} (typ.)	1.8 V
$\mathrm{trrr}^{\text {(max.) }}$	50 ns

1

Characteristics
Table 2: Absolute ratings (limiting values, per diode)

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {RRM }}$	Repetitive peak reverse voltage	600	V
$\mathrm{I}_{\mathrm{F}(\mathrm{RMS})}$	Forward rms current	30	A
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Average forward current	$\mathrm{Tc}=115^{\circ} \mathrm{C}, \delta=0.5$, per diode	15
	$\mathrm{Tc}=100^{\circ} \mathrm{C}, \delta=0.5$, per device	30	A
$\mathrm{I}_{\text {FSM }}$	Surge non repetitive forward current	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$ sinusoidal	120
	Storage temperature range	A	
T_{j}	Maximum operating junction temperature	-65 to +175	${ }^{\circ} \mathrm{C}$

Table 3: Thermal parameters

Symbol	Parameter		Max. value	Unit
$\mathrm{R}_{\text {th(j-c) }}$	Junction to case	Per diode	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Total	1.0	
$\mathrm{R}_{\text {th(c) }}$	Coupling		0.5	

Table 4: Static electrical characteristics (per diode)

Symbol	Parameter	Test conditions		Min.	Typ.	Max.	Unit
$\mathrm{IR}^{(1)}$	Reverse leakage current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$	-		60	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		-	70	800	
$\mathrm{VF}^{(2)}$	Forward voltage drop	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}$	-		2.9	V
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		-	1.4	1.8	

Notes:

${ }^{(1)}$ Pulse test: $\mathrm{t}_{\mathrm{p}}=5 \mathrm{~ms}, \delta<2 \%$
${ }^{(2)}$ Pulse test: $\mathrm{t}_{\mathrm{p}}=380 \mu \mathrm{~s}, \delta<2 \%$

To evaluate the conduction losses, use the following equation:
$P=1.16 \times I_{F(A V)}+0.043 \times I_{F}^{2}(R M S)$

Table 5: Dynamic electrical characteristics

Symbol	Parameters	Test conditions		Min.	Typ.	Max.	Unit
$t_{\text {rr }}$	Reverse recovery time	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{F}=0.5 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{rr}}=0.25 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} \end{aligned}$	-		30	ns
			$\begin{aligned} & \mathrm{I}_{F}=1 \mathrm{~A}, \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V} \end{aligned}$	-		50	
IRM	Reverse recovery current	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}, \\ & \mathrm{~d} \mathrm{I}_{\mathrm{F}} \mathrm{dt}=-200 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V} \end{aligned}$	-	7.5	9.0	A
S factor	Softness factor			-	0.15		
Qrr	Reverse recovery charges			-	220		nC
tir	Forward recovery time	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}, \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=120 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{FR}}=1.1 \times \mathrm{V}_{\mathrm{Fmax}} \end{aligned}$	-		200	ns
VFP	Forward recovery voltage			-		6	V

1.1 Characteristics (curves)

Figure 1: Conduction losses versus average current (per leg)

Figure 2: Forward voltage drop versus forward current (per leg)

Figure 3: Relative variation of thermal impedance junction to case versus pulse duration

Figure 4: Peak reverse recovery current versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ (typical values, per leg)

Figure 5: Reverse recovery time versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ (typical values, per leg)

Figure 6: Reverse recovery charges versus dif/dt (typical values, per leg)

Figure 8: Relative variation of dynamic parameters versus junction temperature

Figure 9: Transient peak forward voltage versus $\mathbf{d l}_{\mathrm{F}} / \mathrm{dt}$ (typical values, per leg)

Figure 10: Forward recovery time versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ (typical values, per leg)

Figure 11: Junction capacitance versus reverse voltage applied (typical values, per leg)

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque values: $0.8 \mathrm{~N} \cdot \mathrm{~m}$
- Maximum torque value: $1.0 \mathrm{~N} \cdot \mathrm{~m}$

2.1 TO-247 package information

Figure 12: TO-247 package outline

Table 6: TO-247 package mechanical data

Ref.	Millimeters					Max.
	Mines					
	Min.	Typ.	Max.	Typ.	Max.	
A	4.85		5.15	0.191		0.203
A1	2.20		2.60	0.086		0.102
b	1.00		1.40	0.039		0.055
b1	2.00		2.40	0.078		0.094
b2	3.00		3.40	0.118		0.133
c	0.40		0.80	0.015		0.031
D ${ }^{(1)}$	19.85		20.15	0.781		0.793
E	15.45		15.75	0.608		0.620
e	5.30	5.45	5.60	0.209	0.215	0.220
L	14.20		14.80	0.559		0.582
L1	3.70		4.30	0.145		0.169
L2		18.50			0.728	
$\varnothing P^{(2)}$	3.55		3.65	0.139		0.143
$\varnothing R$	4.50		5.50	0.177		0.217
S	5.30	5.50	5.70	0.209	0.216	0.224

Notes

${ }^{(1)}$ Dimension D plus gate protusion does not exceed 20.5 mm
${ }^{(2)}$ Resin thickness around the mounting hole is not less than 0.9 mm .

3 Ordering information

Table 7: Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STTH30R06CW	STTH30R06CW	TO-247	4.36 g	30	Tube

4 Revision history

Table 8: Document revision history

Date	Revision	Changes
July-2001	1	Last issue.
18-Jun-2014	2	Updated title. ECOPACK statement updated.
16-Feb-18	3	Updated Section 1.1: "Characteristics (curves)".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Rectifiers category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
70HFR40 RL252-TP 150 KR 30 A 1N5397 NTE5841 NTE6038 SCF5000 1 N4002G 1N4005-TR JANS1N6640US 481235F RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G CRS04(T5L,TEMQ) ACGRA4007-HF ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077 85HFR60 40HFR60 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5850

