

STTH3R02

Datasheet - production data

Ultrafast recovery diode

Table	1.	Device	summa	arv

······					
I _{F(AV)}	3 A				
V _{RRM}	200 V				
T _j (max)	175 °C				
V _F (typ)	0.7 V				
t _{rr} (typ)	16 ns				

Features

- Very low conduction losses
- Negligible switching losses
- Low forward and reverse recovery times
- High junction temperature

Description

The STTH3R02 uses ST's new 200 V planar Pt doping technology, and it is specially suited for switching mode base drive and transistor circuits.

Packaged in DO-201AD, DO-15, and SMC, this device is intended for use in low voltage, high frequency inverters, free wheeling and polarity protection.

This is information on a product in full production.

1 Characteristics

Symbol	Paramete	Value	Unit		
V _{RRM}	Repetitive peak reverse voltage		200	V	
I _{FRM}	Repetitive peak forward current	$t_p = 5 \ \mu s, F = 5 \ kHz$	110	А	
	Forward rma aurrant	DO-201AD / DO-15	70	А	
I _{F(RMS)}	Forward rms current	SMC	70	A	
		DO-15 T _{lead} = 50 °C		A	
I _{F(AV)}	Average forward current, $\delta = 0.5$	DO-201AD T _{lead} = 90 °C	3		
		SMC T _c = 110 °C			
I _{FSM}	Surge non repetitive forward current $t_p = 10$ ms Sinusoidal		75	А	
T _{stg}	Storage temperature range	-65 to + 175	°C		
Тj	Maximum operating junction tempera	175	°C		
ΤL	Maximum lead temperature for solder case	Maximum lead temperature for soldering during 10 s at 4 mm from case			

Table 2. Absolute ratings (limiting values at $T_j = 25$ °C, unless otherwise specified)

Table 3. Thermal parameters

Symbol		Parameter				
R _{th(i-l)} Junction to lead		Lead Length = 10 mm on infinite	DO-15	45		
R _{th(j-l)} Junction to lead	heatsink	DO-201AD	30	°C/W		
R _{th(j-c)}	Junction to case		SMC	20		

Table 4. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾	Reverse leakage	T _j = 25 °C	$V_R = V_{RRM}$			3	ıιΔ
^{IR} current	current	T _j = 125 °C			3	30	μA
V _F ⁽²⁾ Forward voltage drop	T _j = 25 °C	I _F = 9 A			1.20		
	Forward voltage drop	T _j = 25 °C			0.89	1.0	V
	Forward voltage drop	T _j = 100 °C	I _F = 3 A		0.76	0.85	v
		T _j = 150 °C			0.70	0.80	

1. Pulse test: $t_p = 5 \text{ ms}, \delta < 2 \%$

2. Pulse test: t_p = 380 µs, δ < 2 %

To evaluate the conduction losses use the following equation: P = 0.68 x $I_{F(AV)}$ + 0.04 ${I_F}^2_{(RMS)}$

Symbol	Parameter Test conditions Min.		Тур.	Max.	Unit	
t _{rr} Reverse recovery time	$\label{eq:lf} \begin{array}{l} I_{F} = 1 \ A, \ dI_{F}/dt = \text{-50 } A/\mus, \\ V_{R} = 30 \ V, \ T_{j} = 25 \ ^{\circ}C \end{array}$		24	30	ns	
	$I_F = 1 \text{ A, } dI_F/dt = -100 \text{ A/}\mu\text{s},$ $V_R = 30 \text{ V, } T_j = 25 \text{ °C}$		16	20	10	
I _{RM}	Reverse recovery current	I _F = 3 A, dI _F /dt = -200 A/µs, V _R = 160 V, T _j = 125 °C		3.5	4.5	А
t _{fr}	Forward recovery time	$I_F = 3 \text{ A}, \text{ d}I_F/\text{d}t = 100 \text{ A}/\mu\text{s}$ $V_{FR} = 1.1 \text{ x} V_{Fmax}, T_j = 25 \text{ °C}$		40		ns
V _{FP}	Forward recovery voltage	I _F = 3 A, dI _F /dt = 100 A/μs, T _j = 25 °C		1.9		V

 Table 5. Dynamic characteristics

Figure 1. peak current versus duty cycle

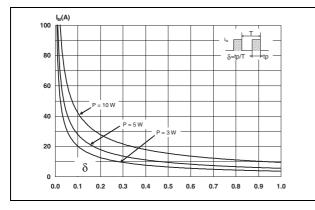
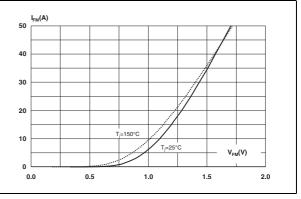
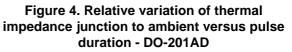
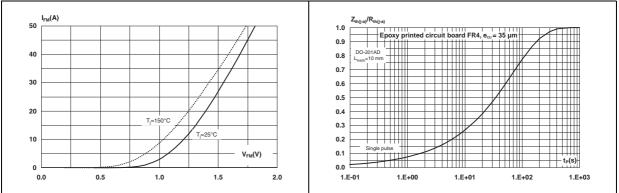
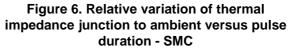





Figure 3. Forward voltage drop versus forward current (maximum values)

Figure 2. Forward voltage drop versus forward current (typical values)


57

_P(s)

1.E+03

1.E+02

Figure 5. Relative variation of thermal impedance junction to ambient versus pulse duration - DO-15

M⁽ⁿm(s) Epoxy printed circuit board FR4, e_{cu} = 35 µm SMC SMC

1.E-01

1.E-02

a)/R_{th(j-a)}

1.0

0.9

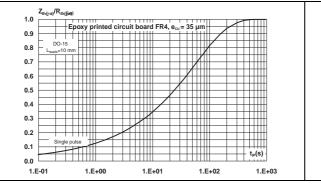
0.8

0.7

0.6

0.5

0.4


0.3

0.2

0.1

0.0

1.E-03

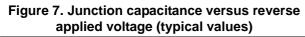


Figure 9. Reverse recovery time versus dl_F/dt (typical values)

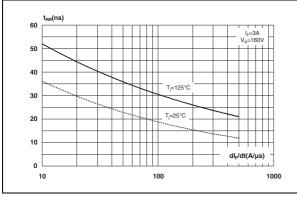


Figure 8. Reverse recovery charges versus dl_F/dt (typical values)

1.E+00

1.E+01

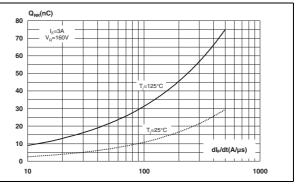
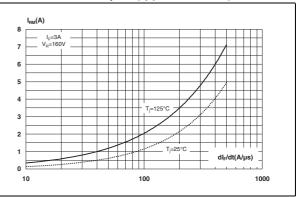
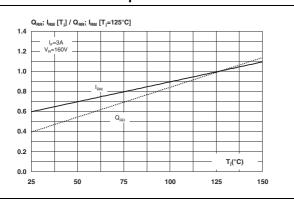
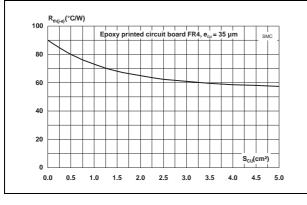
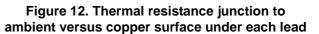
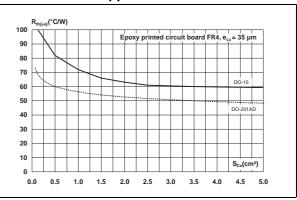
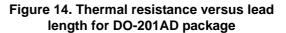




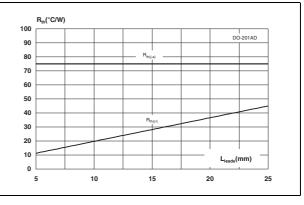
Figure 10. Peak reverse recovery current versus dl_F/dt (typical values)

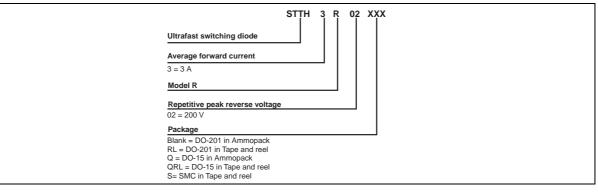





Figure 11. Dynamic parameters versus junction temperature




Figure 13. Thermal resistance versus copper surface under each lead for SMC



2 Ordering information scheme

Figure 15. Ordering information scheme

DocID12359 Rev 3

3 Package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

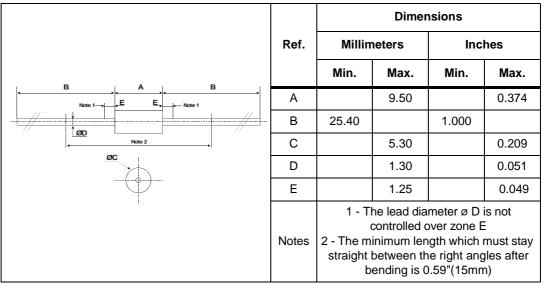
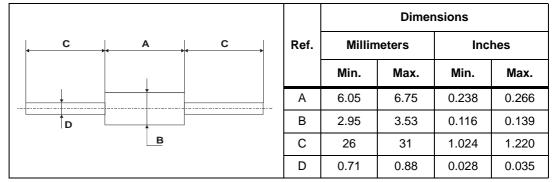
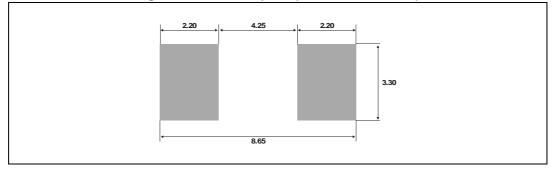



Table 6. DO-201AD dimensions

Table 7. DO-15 dimensions



				nsions	ions	
		Ref.	Millimeters		Inches	
€1			Min.	Max.	Min.	Max.
		A1	1.90	2.45	0.075	0.096
D		A2	0.05	0.20	0.002	0.008
		b	2.90	3.2	0.114	0.126
E		с	0.15	0.41	0.006	0.016
	\uparrow	Е	7.75	8.15	0.305	0.321
	A1	E1	6.60	7.15	0.260	0.281
	2 b	E2	4.40	4.70	0.173	0.185
	-	D	5.55	6.25	0.218	0.246
		L	0.75	1.60	0.030	0.063

Table 8. SMC dimensions

Figure 16. SMC footprint (dimensions in mm)

4 Ordering information

Table et et acting internation					
Order code	Marking	Package	Weight	Base qty	Delivery mode
STTH3R02	STTH3R02	DO-201AD	1.16 g	600	Ammopack
STTH3R02RL	STTH3R02	DO-201AD	1.16 g	1900	Tape and reel
STTH3R02Q	STTH3R02	DO-15	0.4 g	1000	Ammopack
STTH3R02QRL	STTH3R02	DO-15	0.4 g	6000	Tape and reel
STTH3R02S	3R2S	SMC	0.243 g	2500	Tape and reel

Table 9. Ordering information

5 Revision history

Date	Revision	Changes
03-May-2006	1	First issue.
10-Oct-2006	2	Added SMC package.
17-Apr-2014	3	Updated ECOPACK statement. Reformatted to current standards.

Table 10. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID12359 Rev 3

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

 70HFR40
 RL252-TP
 150KR30A
 1N5397
 NTE5841
 NTE6038
 SCF5000
 1N4002G
 1N4005-TR
 JANS1N6640US
 481235F

 RRE02VS6SGTR
 067907F
 MS306
 70HF40
 T85HFL60S02
 US2JFL-TP
 A1N5404G-G
 CRS04(T5L,TEMQ)
 ACGRA4007-HF

 ACGRB207-HF
 CLH03(TE16L,Q)
 ACGRC307-HF
 ACEFC304-HF
 NTE6356
 NTE6359
 NTE6002
 NTE6023
 NTE6039
 NTE6077

 85HFR60
 40HFR60
 70HF120
 85HFR80
 D126A45C
 SCF7500
 D251N08B
 SCHJ22.5K
 SM100
 SCPA2
 SCH10000
 SDHD5K
 VS

 12FL100S10
 ACGRA4001-HF
 D1821SH45T PR
 D1251S45T
 NTE5990
 NTE6358
 NTE6162
 NTE5850