Automotive ultrafast recovery diode

Datasheet - production data

Features

- Very low conduction losses
- Negligible switching losses
- Low forward and reverse recovery times
- High junction temperature
- PPAP capable
- AEC-Q101 qualified

Description

This device uses ST's new 200 V planar Pt doping technology, and it is especially suited for switching mode base drive and transistor circuits.

Packaged in SMB, SMC and DPAK, it is intended for use in low voltage, high frequency inverters, freewheeling and polarity protection in automotive applications.

Table 1: Device summary

Symbol	Value
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	4 A
$\mathrm{~V}_{\text {RRM }}$	200 V
$\mathrm{~T}_{\mathrm{j}}$ (max.)	$175^{\circ} \mathrm{C}$
V_{F} (typ.)	0.76 V
$\mathrm{t}_{\text {rr }}$ (typ.)	16 ns

1

Characteristics
Table 2: Absolute ratings (limiting values at $25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter			Value	Unit
VRRM	Repetitive peak reverse voltage		$\mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$	200	V
$\mathrm{IF}_{\text {(RMS })}$	Forward rms current			10	A
$\mathrm{If}_{\text {(}} \mathrm{AV}$)	Average forward current $\delta=0.5$, square wave	DPAK	$\mathrm{T}_{\mathrm{c}}=160^{\circ} \mathrm{C}$	4	A
		SMB, SMC	$\mathrm{T}_{\text {lead }}=95^{\circ} \mathrm{C}$		
Ifsm	Surge non repetitive forward current	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$ sinusoidal		70	A
$\mathrm{T}_{\text {stg }}$	Storage temperature range			-65 to +175	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum operating junction temperature ${ }^{(1)}$			-40 to +175	${ }^{\circ} \mathrm{C}$

Notes:

${ }^{(1)}\left(\mathrm{dPtot} / \mathrm{dT}_{\mathrm{j}}\right)<\left(1 / \mathrm{Rth}_{\mathrm{th}}(-\mathrm{a})\right)$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 3: Thermal parameters

Symbol	Parameter		Maximum	Unit
$\mathrm{R}_{\mathrm{th}(j-\mathrm{c})}$	Junction to case	DPAK	3.5	C / W
$\mathrm{R}_{\mathrm{th}(-\mathrm{l})}$	Junction to lead	SMB, SMC	20	

Table 4: Static electrical characteristics

Symbol	Parameter	Test c	ditions	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\mathrm{R}}{ }^{(1)}$	Reverse leakage current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$V_{R}=V_{\text {RRM }}$	-		3	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		-	2	20	
$\mathrm{VF}^{(2)}$	Forward voltage drop	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{IF}=4 \mathrm{~A}$	-	0.95	1.05	V
		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$		-	0.76	0.83	

Notes:

${ }^{(1)}$ Pulse test: $\mathrm{t}_{\mathrm{p}}=5 \mathrm{~ms}, \delta<2 \%$
${ }^{(2)}$ Pulse test: $\mathrm{t}_{\mathrm{p}}=380 \mu \mathrm{~s}, \delta<2 \%$

To evaluate the conduction losses use the following equation:
$\mathrm{P}=0.67 \times \mathrm{I}_{\mathrm{F}(\mathrm{AV})}+0.04 \mathrm{I}^{2}(\mathrm{RMS})$

Table 5: Dynamic characteristics

Symbol	Parameters		est conditions	Min.	Typ.	Max.	Unit
$t_{\text {rr }}$	Reverse recovery time	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} ; \mathrm{dl} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{s} ; \\ & \mathrm{V}_{\mathrm{R}}=30 \mathrm{~V} \end{aligned}$	-	24	30	ns
			$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} ; \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-100 \mathrm{~A} / \mu \mathrm{s} ; \\ & \mathrm{V}_{\mathrm{R}}=30 \mathrm{~V} \end{aligned}$	-	16	20	
IRM	Reverse recovery current	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=4 \mathrm{~A} ; \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-200 \mathrm{~A} / \mu \mathrm{s} ; \\ & \mathrm{V}_{\mathrm{R}}=160 \mathrm{~V} \end{aligned}$	-	4.4	5.5	A
trr	Reverse recovery time			-	27		ns
Qrr	Reverse recovery charges			-	60		nC

1.1 Characteristics (curves)

Figure 1: Peak current versus duty cycle

Figure 2: Forward voltage drop versus forward current (typical values)

Figure 3: Forward voltage drop versus forward current (maximum values)

Figure 4: Relative variation of thermal impedance, junction to case, versus pulse duration

Figure 5: Relative variation of thermal impedance, junction to ambient, versus pulse duration (SMB)

Figure 6: Relative variation of thermal impedance, junction to ambient, versus pulse duration (SMC)

Figure 7: Junction capacitance versus reverse applied voltage (typical values)

Figure 8: Reverse recovery charges versus dIF/dt (typical values)

Figure 9: Reverse recovery time versus dIF/dt (typical values)

Figure 10: Peak reverse recovery current versus dIF/dt (typical values)

Figure 11: Dynamic parameters versus junction temperature

Figure 12: Thermal resistance, junction to ambient, versus copper surface under tab

Figure 13: Thermal resistance, junction to ambient, versus copper surface under each lead

Figure 14: Thermal resistance, junction to ambient, versus copper surface under each lead

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

2.1 DPAK package information

Figure 15: DPAK package outline

Table 6: DPAK mechanical data

Dim.	Millimeters					Inches
	Typ.			Max.	Min.	Typ.
	Min.	Max.				
A	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
b	0.64		0.90	0.025		0.035
b4	5.20		5.40	0.205		0.213
c	0.45		0.60	0.018		0.024
c2	0.48		0.60	0.019		0.024
D	6.00		6.20	0.236		0.244
D1	4.95	5.10	5.25	0.201	0.195	0.207
E	6.40		6.60	0.252		0.260
E1	4.60	4.70	4.80	0.181	0.185	0.189
e	2.16	2.28	2.40	0.085	0.090	0.094
e1	4.40		4.60	0.173		0.181
H	9.35		10.10	0.368		0.398
L	1.00		1.50	0.039		0.059
(L1)	2.60	2.80	3.00	0.102	0.110	0.118
L2	0.65	0.80	0.95	0.026	0.031	0.037
L4	0.60		1.00	0.024		0.039
R		0.20			0.008	
V2	0°		8°	$0{ }^{\circ}$		8°

Figure 16: DPAK recommended footprint (dimensions are in mm)

2.2 SMC package information

Figure 17: SMC package outline

Table 7: SMC package mechanical data

Ref.	Dimensions			
	Millimeters		Inches	
	Min.	Max.	Min.	Max.
A1	1.90	2.45	0.0748	0.0965
A2	0.05	0.20	0.0020	0.0079
b	2.90	3.20	0.1142	0.1260
c	0.15	0.40	0.0059	0.0157
D	5.55	6.25	0.2185	0.2461
E	7.75	8.15	0.3051	0.3209
E1	6.60	7.15	0.2598	0.2815
E2	4.40	4.70	0.1732	0.1850
L	0.75	1.50	0.0295	0.0591

Figure 18: SMC recommended Footprint

2.3 SMB package information

Figure 19: SMB package outline

Table 8: SMB package mechanical data

Ref.	Dimensions			
	Millimeters		Inches	
	Min.	Max.	Min.	Max.
A1	1.90	2.45	0.0748	0.0965
A2	0.05	0.20	0.0020	0.0079
b	1.95	2.20	0.0768	0.0867
C	0.15	0.40	0.0059	0.0157
D	3.30	3.95	0.1299	0.1556
E	5.10	5.60	0.2008	0.2205
E1	4.05	4.60	0.1594	0.1811
L	0.75	1.50	0.0295	0.0591

Figure 20: SMB recommended Footprint

3 Ordering information

Figure 21: Ordering information scheme

Table 9: Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STTH4R02BY-TR	STTH4 R02BY	DPAK	0.320 g	2500	Tape and reel
STTH4R02UY	4R2UY	SMB	0.110 g	2500	Tape and reel
STTH4R02SY	4R2SY	SMC	0.243 g	2500	Tape and reel

4 Revision history

Table 10: Document revision history

Date	Revision	Changes
03-Dec-2010	1	First issue
	2	Added device in DPAK. Updated features and description in cover page. Updated Table 2: "Absolute ratings (limiting values at 25 ${ }^{\circ} \mathrm{C}$, unless otherwise specified)", Table 3: "Thermal parameters" and Table 5: "Dynamic characteristics". 14-Apr-2016
Updated Figure 2: "Forward voltage drop versus forward current (typical values)" and Figure 3: "Forward voltage drop versus forward current (maximum values)". Updated Section 4: "Ordering information".		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Rectifiers category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
70HFR40 RL252-TP 150 KR 30 A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F RRE02VS6SGTR 067907F MS306 70HF40 T110HF60 T85HFL60S02 US2JFL-TP A1N5404G-G CRS04(T5L,TEMQ) ACGRA4007-HF ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077

85HFR60 40HFR60 1N1186RA 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS-12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358

