

STU7N60DM2

N-channel 600 V, 0.78 Ω typ., 6 A MDmesh™ DM2 Power MOSFET in an IPAK package

Datasheet - production data

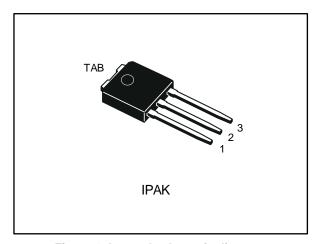
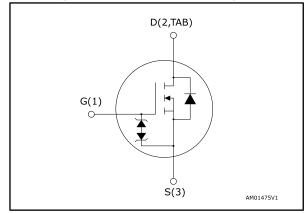



Figure 1: Internal schematic diagram

Features

Order code	Order code V _{DS} R _{DS(on)} max.		ΙD	Ртот
STU7N60DM2	600 V	0.90 Ω	6 A	60 W

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmesh $^{\text{TM}}$ DM2 fast recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low R_{DS(on)}, rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STU7N60DM2	7N60DM2	IPAK	Tube

Contents STU7N60DM2

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	rcuits	8
4	Packag	e information	9
	4.1	IPAK package information	9
5	Revisio	on history	11

STU7N60DM2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	±25	V
1_	Drain current (continuous) at T _{case} = 25 °C	6	۸
ID	Drain current (continuous) at T _{case} = 100 °C	3.8	Α
I _{DM} ⁽¹⁾	Drain current (pulsed) 24		Α
P _{TOT}	Total dissipation at T _{case} = 25 °C 60		W
dv/dt ⁽²⁾	Peak diode recovery voltage slope		V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness 50		V/IIS
T _{stg}	Storage temperature range -55 to 150		°C
Tj	Operating junction temperature range	-55 (0 150	C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit	
R _{thj-case}	Thermal resistance junction-case	2.08	900	
R _{thj-amb}	Thermal resistance junction-ambient	100	°C/W	

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive	1.5	Α
E _{AS} ⁽²⁾	Single pulse avalanche energy	160	mJ

Notes:

⁽¹⁾ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ $I_{SD} \leq 6$ A, di/dt=900 A/µs; V_{DS} peak < $V_{(BR)DSS},$ V_{DD} = 480 V.

 $^{^{(3)}}$ V_{DS} ≤ 480 V.

 $^{^{(1)}}$ Pulse width limited by T_{jmax} .

 $^{^{(2)}}$ Starting T_j = 25 °C, I_D = $I_{AR},\,V_{DD}$ = 50 V.

Electrical characteristics STU7N60DM2

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			٧
	Zoro goto voltago droin	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{case} = 125 \text{ °C} (1)$			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±5	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3.25	4	4.75	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 3 A		0.78	0.90	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	324	-	
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	18	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	2	1	ρı
Coss	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	-	25	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	6	-	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 6 \text{ A},$	-	7.5	-	
Qgs	Gate-source charge	V _{GS} = 0 to 10 V (see Figure 15: "Test circuit for	-	2.2	-	nC
Q_{gd}	Gate-drain charge	gate charge behavior")	-	3.2	-	

Notes:

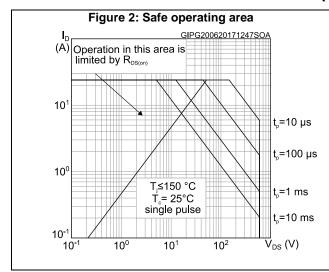
Table 7: Switching times

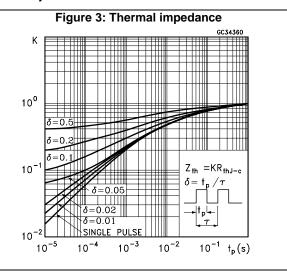
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 3 \text{ A R}_G = 4.7 \Omega,$	1	10		
t _r	Rise time	V _{GS} = 10 V (see Figure 14: "Test circuit for	-	6	-	
t _{d(off)}	Turn-off delay time	resistive load switching times"	-	12.6	-	ns
t _f	Fall time	and Figure 19: "Switching time waveform")	1	22.6	1	

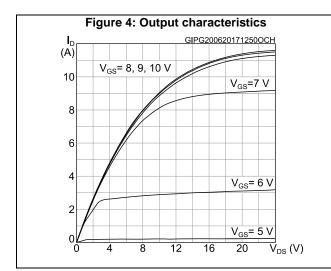
⁽¹⁾Defined by design, not subject to production test.

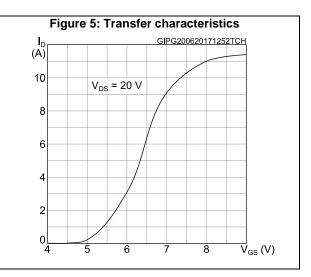
 $^{^{(1)}}$ $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

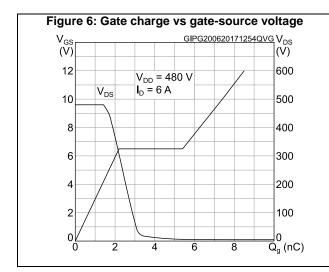
Table 8: Source-drain diode

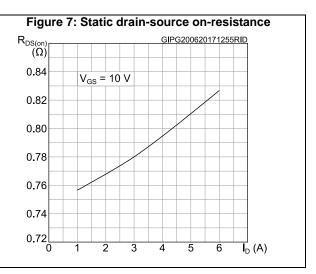

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		6	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		24	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 6 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 6 A, di/dt = 100 A/μs,	-	69		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}$ (see Figure 16: "Test circuit for	-	164		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	4.8		А
t _{rr}	Reverse recovery time	I _{SD} = 6 A, di/dt = 100 A/µs,	-	144		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$ (see Figure 16: "Test circuit for - 4		492		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	6.8		Α

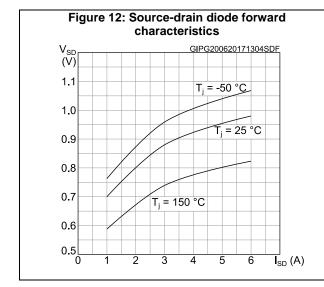

Notes:

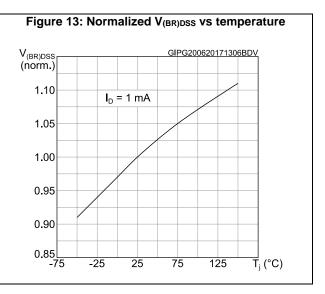

⁽¹⁾ Pulse width is limited by safe operating area.


 $^{^{(2)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.


2.1 Electrical characteristics (curves)




STU7N60DM2 Electrical characteristics


Figure 8: Capacitance variations GIPG200620171256CVR (pF) 10^{3} C_{ISS} 10^{2} Coss 10¹ f = 1 MHz C_{RSS} 10⁰ $\vec{V}_{DS}(V)$ 10⁻¹ 10^{0} 10¹ 10^{2}

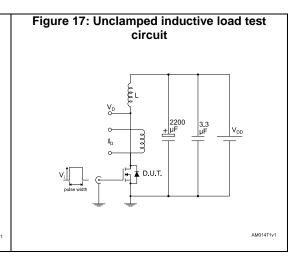
E_{OSS} (μJ) 2.4 2.0 1.6 1.2 0.8 0.4 0.0 0 100 200 300 400 500 600 V_{DS} (V)

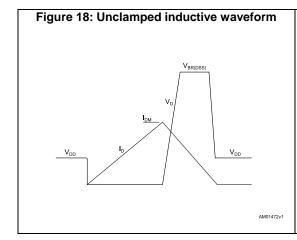
Figure 10: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GIPG200620171302VTH $I_D = 250 \, \mu A$ 1.1 1.0 0.9 8.0 0.7 -25 25 75 125 $\overline{\mathsf{T}}_{\mathsf{j}}\left(^{\mathsf{o}}\mathsf{C}\right)$

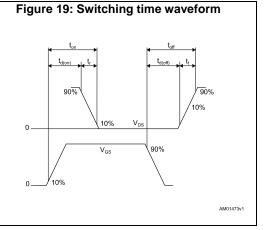
Test circuits STU7N60DM2

3 Test circuits

Figure 14: Test circuit for resistive load switching times


Figure 15: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF 1 kΩ


Vos 1 kΩ 1 kΩ

Vos 1 kΩ 1 kΩ

AM01466y1

Package information 4

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 **IPAK** package information

L2 D b2 (3x) Н **b** (3x) A 1 *B5* 0068771_IK_typeA_rev14 e 1-

Figure 20: IPAK (TO-251) type A package outline

Table 9: IPAK (TO-251) type A package mechanical data

Dim	(2 2 7 3)	mm	
Dim.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5		0.30	
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
Е	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10°	

STU7N60DM2 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
20-Jun-2017	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 SPP20N60S5XK FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7

EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF