

STU9HN65M2

N-channel 650 V, 0.71 Ω typ., 5.5 A MDmesh[™] M2 Power MOSFET in an IPAK package

Datasheet - production data

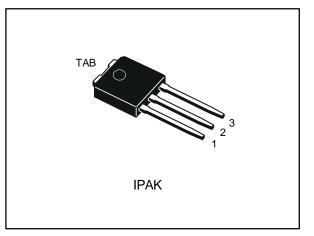
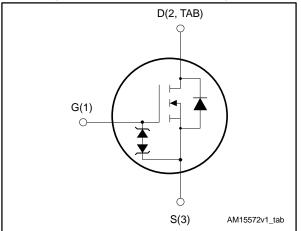



Figure 1: Internal schematic diagram

Features

Order code	VDS	RDS(on) max.	ΙD
STU9HN65M2	650 V	0.82 Ω	5.5 A

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh[™] M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STU9HN65M2	9HN65M2	IPAK	Tube

DocID027605 Rev 3

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	IPAK (TO-251) type A package information	9
5	Revisio	n history	11

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
ID	Drain current (continuous) at $T_C = 25 \ ^{\circ}C$	5.5	А
lD	Drain current (continuous) at T _c = 100 °C	3.5	А
IDM ⁽¹⁾	Drain current (pulsed)	22	А
Ртот	Total dissipation at $T_C = 25 \ ^{\circ}C$	60	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
Tj	Max. operating junction temperature	150	C

Notes:

 $^{\left(1\right) }$ Pulse width limited by safe operating area.

 $^{(2)}$ I_{SD} ≤ 5.5 A, di/dt ≤ 400 A/µs; V_{DS peak} < V_{(BR)DSS}, V_DD = 80% V_{(BR)DSS}.

 $^{(3)}$ V_{DS} ≤ 520 V

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj} -case	Thermal resistance junction-case max.	2.08	°C/W
Rthj-amb	Thermal resistance junction-ambient max.		°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by $T_{\mbox{\scriptsize jmax}}$)	1.0	А
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	105	mJ

2 Electrical characteristics

 $(T_C = 25 \ ^{\circ}C \text{ unless otherwise specified}).$

Table 5: Static						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 V, I_D = 1 mA$	650			V
	Zara gata valtaga drain	V_{GS} = 0 V, V_{DS} = 650 V			1	μA
IDSS	IDSS Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 650 V,$ $T_{C} = 125 °C$			100	μA
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 V, V_{GS} = \pm 25 V$			±10	μΑ
$V_{\text{GS(th)}}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2	3	4	V
RDS(on)	Static drain-source on- resistance	V_{GS} = 10 V, I _D = 2.5 A		0.71	0.82	Ω

Table 6: Dynamic							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
C _{iss}	Input capacitance		-	325	-	pF	
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V		16	-	pF	
Crss	Reverse transfer capacitance			0.85	-	pF	
Coss eq. ⁽¹⁾	Equivalent output capacitance	$V_{DS} = 0 V$ to 520 V, $V_{GS} = 0 V$	-	109	-	pF	
Rg	Intrinsic gate resistance	f = 1 MHz open drain	-	5.6	-	Ω	
Qg	Total gate charge		-	11.5	-	nC	
Q _{gs}	Gate-source charge	$V_{DD} = 520 \text{ V}, I_D = 5 \text{ A}, V_{GS} = 10 \text{ V}$ (see Figure 15: "Test circuit for gate charge behavior")	-	2.5	-	nC	
Q_{gd}	Gate-drain charge		-	5	-	nC	

Notes:

 $^{(1)}$ Coss $_{eq.}$ is defined as a constant equivalent capacitance giving the same charging time as Coss when VDs increases from 0 to 80% VDss.

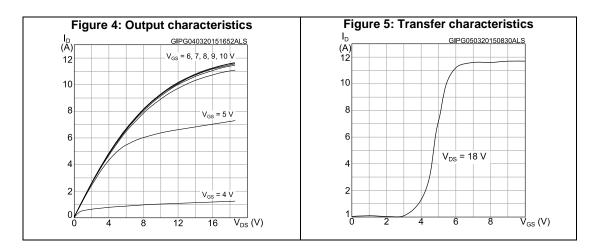
Table 7: Switching times

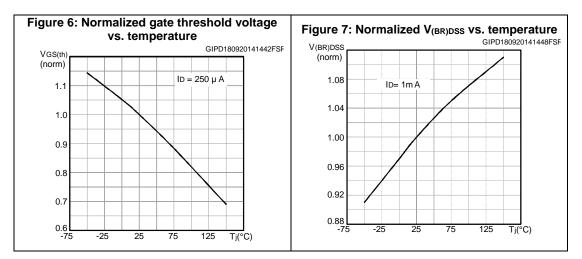
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 325 \text{ V}, \text{ I}_D = 2.5 \text{ A} \text{ R}_G = 4.7 \Omega,$	-	7.5	-	ns
tr	Rise time	V _{GS} = 10 V (see Figure 14: "Test circuit for resistive load switching	-	4.6	-	ns
t _{d(off)}	Turn-off-delay time	times" and Figure 19: "Switching time	-	24	-	ns
t _f	Fall time	waveform")	-	14.5	-	ns

Electrical characteristics

Table 8: Source-drain diode						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		5.5	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		22	А
V _{SD} ⁽²⁾	Forward on voltage	$V_{GS} = 0 V$, $I_{SD} = 5 A$	-		1.6	V
trr	Reverse recovery time	I _{SD} = 5 A, di/dt = 100 A/µs,	-	268		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load switching	-	1.7		μC
I _{RRM}	Reverse recovery current	and diode recovery times")		12.5		А
trr	Reverse recovery time	I _{SD} = 5 A, di/dt = 100 A/µs,	-	408		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{T}_{\text{j}} = 150 ^{\circ}\text{C}$ (see Figure 16: "Test circuit for inductive load	-	2.6		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	13		А

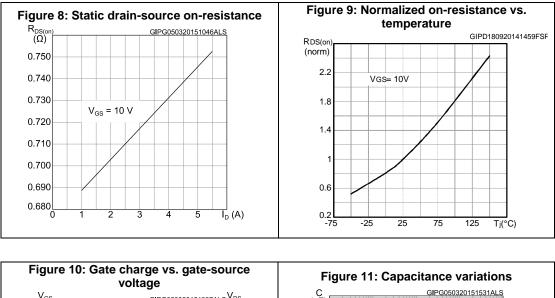
Notes:

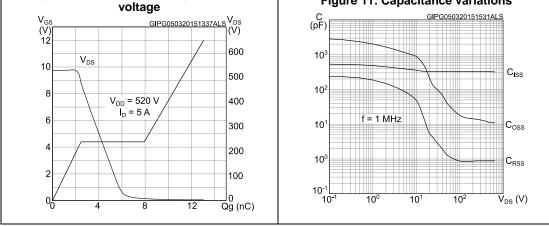

 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Pulse}}$ width is limited by safe operating area.

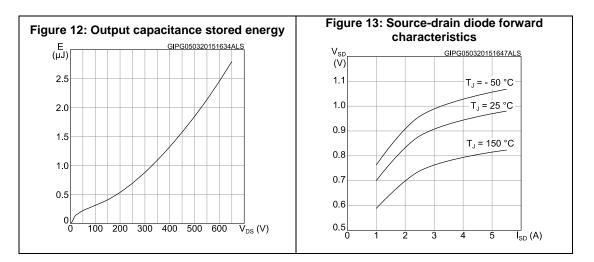

 $^{(2)}\text{Pulse test: pulse duration}$ = 300 $\mu\text{s},$ duty cycle 1.5%.

2.1

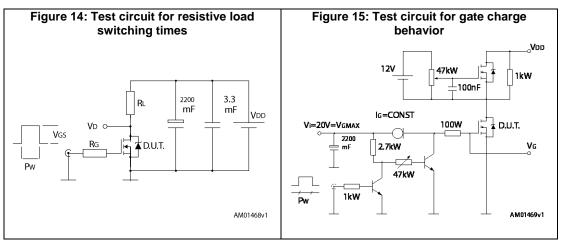
Electrical characteristics (curves) Figure 3: Thermal impedance CG34360-C Figure 2: Safe operating area Κ GIPG040320151136ALS Ι_D (A) 10 \$ aled 10⁰ 10 µs δ =0.5 \$ bymat 100 µs Operation δ =0.2 10⁰ Z_{th}=K*R_{thj-c} 1 ms δ=0.1 $\delta = t_{\rm p} / T$ 10 ms 10 10 T_i ≤ 150 °C T_c = 25 °C δ =0.05 δ =0.02 single pulse δ =0.01 10-2 Single pulse 10¹ V_{DS} (V) 10 10 10 10⁻² 10-5 10⁻⁴ 10-3 10⁻² 10⁻¹ t_p (s)

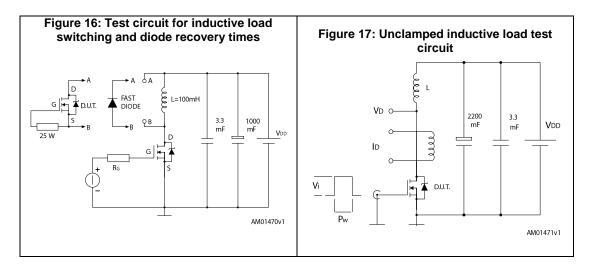


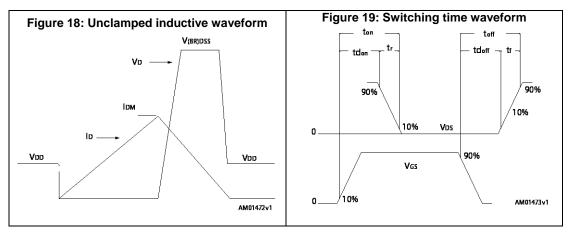



DocID027605 Rev 3

Electrical characteristics



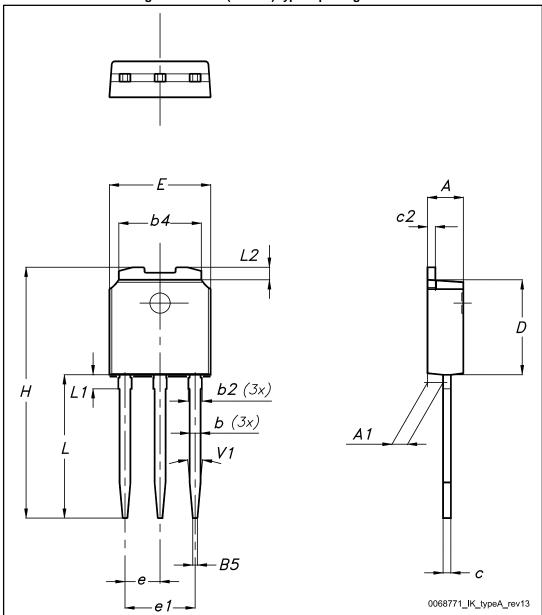



57

DocID027605 Rev 3

3 Test circuits

DocID027605 Rev 3



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 IPAK (TO-251) type A package information

Figure 20: IPAK (TO-251) type A package outline

Package information

STU9HN65M2

nformation					
Tal	ole 9: IPAK (TO-251) typ	e A package mechanical	data		
Dim.		mm			
	Min.	Тур.	Max.		
A	2.20		2.40		
A1	0.90		1.10		
b	0.64		0.90		
b2			0.95		
b4	5.20		5.40		
B5		0.30			
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
E	6.40		6.60		
е		2.28			
e1	4.40		4.60		
Н		16.10			
L	9.00		9.40		
L1	0.80		1.20		
L2		0.80	1.00		
V1		10°			

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
11-Mar-2015	1	Initial release.
23-Apr-2015	2	Document status promoted to 'Production data'.
05-Oct-2015	3	Updated the title and changed V_{DS} parameter in the table of features.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7