N-channel $900 \mathrm{~V}, 0.72 \Omega, 11$ A TO-247 Zener-protected SuperMESH ${ }^{\text {TM }}$ Power MOSFET

Features

Order code	$\mathbf{V}_{\text {DSS }}$	$\mathbf{R}_{\text {DS(on) }}$ max	$\mathbf{I}_{\mathbf{D}}$	$\mathbf{P w}$
STW12NK90Z	900 V	$<0.88 \Omega$	11 A	230 W

- Extremely high dv/dt capability

■ 100% avalanche tested

- Gate charge minimized
- Very low intrinsic capacitance
- Very good manufacturing repeatability

Application

- Switching applications

Description

This device is made using the SuperMESH ${ }^{\text {™ }}$ Power MOSFET technology that is obtained through an extreme optimization of ST's well established strip-based PowerMESH ${ }^{\text {TM }}$ layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good $d v / d t$ capability for the most demanding applications. Such series complements ST full range of high voltage MOSFETs including revolutionary MDmesh ${ }^{\text {TM }}$ products.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order code	Marking	Package	Packaging
STW12NK90Z	W12NK90Z	TO-247	Tube

Contents

1 Electrical ratings 3
2 Electrical characteristics 4
2.1 Electrical characteristics (curves) 6
3 Test circuits 8
4 Package mechanical data 9
5 Revision history 12

1
 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	900	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate- source voltage	± 30	V
I_{D}	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	11	A
I_{D}	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	7	A
$\mathrm{I}_{\mathrm{DM}}{ }^{(1)}$	Drain current (pulsed)	44	A
$\mathrm{P}_{\text {tot }}$	Total dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	230	W
	Derating Factor	1.85	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{ESD}(\mathrm{G}-\mathrm{S})}$	Gate source ESD(HBM-C=100 pF, R=1.5 $\mathrm{k} \Omega)$	6000	V
$\mathrm{dv} / \mathrm{dt}{ }^{(2)}$	Peak diode recovery voltage slope	4.5	$\mathrm{~V} / \mathrm{ns}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Max. operating junction temperature		

1. Pulse width limited by safe operating area.
2. $\mathrm{I}_{\mathrm{SD}} \leq 11 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 200 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}, \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\mathrm{JMAX}}$.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\mathrm{thj} \text {-case }}$	Thermal resistance junction-case max	0.54	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{thj}}$-amb	Thermal resistance junction-ambient max	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{J}	Maximum lead temperature for soldering purpose	300	${ }^{\circ} \mathrm{C}$

Table 4. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I_{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_{j} max)	11	A
E_{AS}	Single pulse avalanche energy $\left(\right.$ starting $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{AR}}, \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}$)	500	mJ

2 Electrical characteristics

($T_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	Drain-source breakdown voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$	900			V
$\mathrm{I}_{\mathrm{DSS}}$	Zero gate voltage drain current $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$\mathrm{V}_{\mathrm{DS}}=\max$ rating $\mathrm{V}_{\mathrm{DS}}=\max$ rating, $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			1	$\mu \mathrm{~A}$
50	$\mu \mathrm{~A}$					
$\mathrm{I}_{\mathrm{GSS}}$	Gate-body leakage current $\left(\mathrm{V}_{\mathrm{DS}}=0\right)$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$		± 10	$\mu \mathrm{~A}$	
$\mathrm{~V}_{\mathrm{GS}(\text { th })}$	Gate threshold voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$	3	3.75	4.5	V
$\mathrm{R}_{\mathrm{DS}(o n)}$	Static drain-source on resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.5 \mathrm{~A}$		0.72	0.88	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$g_{\text {fs }}{ }^{(1)}$	Forward transconductance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.5 \mathrm{~A}$	-	11		S
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\mathrm{rss}} \end{aligned}$	Input capacitance Output capacitance Reverse transfer capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	-	$\begin{gathered} 3500 \\ 280 \\ 58 \end{gathered}$		pF pF pF
$\mathrm{Cossseq}^{(2)}$	Equivalent output capacitance	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=0$ to 800 V	-	117		pF
$\begin{gathered} \mathrm{t}_{\mathrm{d}(\mathrm{on})} \\ \mathrm{t}_{\mathrm{r}} \\ \mathrm{t}_{\mathrm{d}(\mathrm{off})} \\ \mathrm{t}_{\mathrm{f}} \end{gathered}$	Turn-on delay time Rise time Turn-off delay time Fall time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=450 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega \mathrm{~V} \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \text { (see Figure 14) } \end{aligned}$	-	$\begin{aligned} & 31 \\ & 20 \\ & 88 \\ & 55 \end{aligned}$		ns ns ns ns
$\begin{aligned} & Q_{\mathrm{g}} \\ & \mathrm{Q}_{\mathrm{gs}} \\ & \mathrm{Q}_{\mathrm{gd}} \end{aligned}$	Total gate charge Gate-source charge Gate-drain charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=720 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=4.7 \Omega \\ & \text { (see Figure 15) } \end{aligned}$	-	$\begin{gathered} 113 \\ 19 \\ 60 \end{gathered}$	152	$\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$

1. Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%.
2. Coss eq. is defined as a constant equivalent capacitance giving the same charging time as $C_{o s s}$ when $V_{D S}$ increases from 0 to $80 \% V_{\text {DSS }}$.

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\stackrel{\mathrm{I}_{\mathrm{SD}}}{\mathrm{I}_{\text {SDM }}}$	Source-drain current Source-drain current (pulsed)		-		$\begin{aligned} & 11 \\ & 44 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
$\mathrm{V}_{\mathrm{SD}}{ }^{(2)}$	Forward on voltage	$\mathrm{I}_{\mathrm{SD}}=11 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	-		1.6	V
$\begin{gathered} \mathrm{t}_{\mathrm{rr}} \\ \mathrm{Q}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RRM}} \end{gathered}$	Reverse recovery time Reverse recovery charge Reverse recovery current	$\begin{aligned} & \mathrm{I}_{\mathrm{SD}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V} \\ & \text { di/dt }=100 \mathrm{~A} / \mu \mathrm{s}, \\ & \text { (see Figure } 16 \text {) } \end{aligned}$	-	$\begin{gathered} 728 \\ 7.8 \\ 21.6 \end{gathered}$		$\begin{gathered} \mathrm{ns} \\ \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$
$\begin{gathered} \mathrm{t}_{\mathrm{rr}} \\ \mathrm{Q}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RRM}} \end{gathered}$	Reverse recovery time Reverse recovery charge Reverse recovery current	$\begin{aligned} & \mathrm{I}_{\mathrm{SD}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C}(\text { see Figure 16 }) \end{aligned}$	-	$\begin{gathered} 964 \\ 11 \\ 23 \end{gathered}$		$\begin{gathered} \mathrm{ns} \\ \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$

1. Pulse width limited by safe operating area.
2. Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%

Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$B_{\text {GSO }}$	Gate-source breakdown voltage	Igs $= \pm 1 \mathrm{~mA}$ (open drain)	30	-	V	

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 4. Output characteristics

Figure 6. Transconductance

Figure 3. Thermal impedance

Figure 5. Transfer characteristics

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

Figure 10. Normalized gate threshold voltage vs temperature

Figure 12. Source-drain diode forward characteristics

Figure 11. Normalized on resistance vs temperature

Figure 13. Normalized breakdown voltage vs temperature

3 Test circuits

Figure 14. Switching times test circuit for resistive load

Figure 16. Test circuit for inductive load switching and diode recovery times

Figure 15. Gate charge test circuit

Figure 17. Unclamped Inductive load test circuit

Figure 18. Unclamped inductive waveform
Figure 19. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 9. TO-247 mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
c	0.40		0.80
D	19.85		20.15
E	15.45		15.75
e	14.20		14.80
L	3.70		4.30
L1			
L2	3.55		3.65
\varnothing P	4.50		5.50
$\varnothing R$			
S			

Figure 20. TO-247 drawing

5 Revision history

Table 10. Document revision history

Date	Revision	Changes
21-Jun-2004	4	Complete version
17-Oct-2006	5	New template, no content change
29-Apr-2011	6	Table 2: Absolute maximum ratings has been updated

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7

