STF13N95K3, STFI13N95K3, STP13N95K3, STW13N95K3
N-channel $950 \mathrm{~V}, 0.68 \Omega$ typ., 10 A Zener-protected SuperMESH3 ${ }^{\text {TM }}$ Power MOSFET in TO-220FP, I ${ }^{2}$ PAKFP, TO-220 and TO-247

Datasheet - production data

Features

Order codes	$\mathrm{V}_{\text {DSS }}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}{ }^{\text {max }}$	I_{D}	$\mathrm{P}_{\text {TOT }}$
STF13N95K3	950 V	$<0.85 \Omega$	10 A	
STFI13N95K3				40 W
STP13N95K3				
STW13N95K3				W

- Gate charge minimized

■ Extremely large avalanche performance

- 100\% avalanche tested
- Very low intrinsic capacitance

■ Zener-protected

Applications

■ Switching applications

Description

These SuperMESH3 ${ }^{\text {TM }}$ Power MOSFETs are the result of improvements applied to STMicroelectronics' SuperMESH ${ }^{\text {TM }}$ technology, combined with a new optimized vertical structure. These devices boast an extremely low onresistance, superior dynamic performance and high avalanche capability, rendering them suitable for the most demanding applications.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order codes	Marking	Package	Packaging
STF13N95K3	13N95K3	TO-220FP	Tube
STFI13N95K3		1^{2} PAKFP	
STP13N95K3		TO-220	
STW13N95K3		TO-247	

Contents

1 Electrical ratings .. 3
2 Electrical characteristics ... 4
2.1 Electrical characteristics (curves) 6

3 Test circuits .. 9

4 Package mechanical data . 10
5 Revision history 18

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value		Unit
		$\begin{aligned} & \text { TO-220 } \\ & \text { TO-247 } \end{aligned}$	TO-220FP $I^{2} \text { PAKFP }$	
V_{DS}	Drain source voltage	950		V
V_{GS}	Gate-source voltage	± 30		V
I_{D}	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	10	$10^{(1)}$	A
I_{D}	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	6	$6{ }^{(1)}$	A
$\mathrm{ImM}^{(2)}$	Drain current (pulsed)	40	$40{ }^{(1)}$	A
$\mathrm{P}_{\text {TOT }}$	Total dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	190	40	W
$\mathrm{I}_{\text {AR }}$	Max current during repetitive or single pulse avalanche (pulse width limited by $\mathrm{T}_{\text {jmax }}$)	13		A
$\mathrm{E}_{\text {AS }}$	Single pulse avalanche energy (starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{AS}}, \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}$)	400		mJ
$\mathrm{V}_{\text {ISO }}$	Insulation withstand voltage (RMS) from all three leads to external heat sink ($\mathrm{t}=1 \mathrm{~s} ; \mathrm{TC}=25^{\circ} \mathrm{C}$)		2500	V
$\mathrm{dv} / \mathrm{dt}{ }^{(3)}$	Peak diode recovery voltage slope	9		V/ns
$\begin{gathered} \mathrm{T}_{\mathrm{j}} \\ \mathrm{~T}_{\mathrm{stg}} \end{gathered}$	Operating junction temperature Storage temperature	- 55 to 150		${ }^{\circ} \mathrm{C}$

1. Limited by maximum junction temperature.
2. Pulse width limited by safe operating area.
3. $\mathrm{I}_{\mathrm{SD}} \leq 10 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 400 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\text {Peak }} \leq \mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$.

Table 3. Thermal data

Symbol	Parameter	Value			
		TO-220	TO-247	TO-220FP I2PAKFP	Unit
		0.66		3.13	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rthj-amb	Thermal resistance junction-amb \max	62.5	50	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

2 Electrical characteristics

$\left(T_{\text {CASE }}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified $)$

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	Drain-source breakdown voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$	950			V
$\mathrm{I}_{\mathrm{DSS}}$	Zero gate voltage drain current $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$\mathrm{V}_{\mathrm{DS}}=950 \mathrm{~V}$, $\mathrm{V}_{\mathrm{DS}}=950 \mathrm{~V}, \mathrm{TC}=125^{\circ} \mathrm{C}$			1	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{GSS}}$	Gate body leakage current $\left(\mathrm{V}_{\mathrm{DS}}=0\right)$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{GS}(\mathrm{th})}$	Gate threshold voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$	3	4	5	V
$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	Static drain-source on- resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}$		0.68	0.85	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\begin{aligned} & \hline \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\mathrm{rss}} \end{aligned}$	Input capacitance Output capacitance Reverse transfer capacitance	$\mathrm{V}_{\mathrm{DS}}=100 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{GS}}=0$	-	$\begin{gathered} \hline 1620 \\ 117 \\ 1.2 \end{gathered}$	-	$\begin{aligned} & \overline{\mathrm{pF}} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
$\mathrm{C}_{\mathrm{o}(\mathrm{tr})}{ }^{(1)}$	Equivalent capacitance time related	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=0$ to 760 V	-	115	-	pF
$\mathrm{C}_{\text {O(er) }}{ }^{(2)}$	Equivalent capacitance energy related		-	131	-	pF
R_{G}	Intrinsic gate resistance	$\mathrm{f}=1 \mathrm{MHz}$ open drain	-	2.3	-	Ω
$\begin{aligned} & \hline Q_{g} \\ & Q_{g s} \\ & Q_{g d} \end{aligned}$	Total gate charge Gate-source charge Gate-drain charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=760 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \text { (see Figure 20) } \end{aligned}$	-	$\begin{aligned} & 51 \\ & 10 \\ & 30 \end{aligned}$	-	$\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$

1. Time related is defined as a constant equivalent capacitance giving the same charging time as $\mathrm{C}_{\text {oss }}$ when $V_{D S}$ increases from 0 to $80 \% V_{D S S}$
2. Energy related is defined as a constant equivalent capacitance giving the same stored energy as $\mathrm{C}_{\text {oss }}$ when $V_{D S}$ increases from 0 to $80 \% V_{\text {DSS }}$

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-on delay time	$\mathrm{V}_{\mathrm{DD}}=475 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}$,		18		ns
t_{r}	Rise time	$\mathrm{R}_{\mathrm{G}}=4.7 \Omega \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	-	16		ns
$\mathrm{t}_{\mathrm{d}(\mathrm{off})}$	Turn-off delay time	(see Figure 22)		50		ns
t_{f}	Fall time					

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\begin{aligned} & \mathrm{I}_{\mathrm{SD}} \\ & \mathrm{I}_{\mathrm{SDM}} \end{aligned}$	Source-drain current Source-drain current (pulsed)		-		$\begin{aligned} & 10 \\ & 40 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~A} \end{gathered}$
$\mathrm{V}_{\mathrm{SD}}{ }^{(1)}$	Forward on voltage	$\mathrm{I}_{\mathrm{SD}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	-		1.6	V
$\begin{gathered} \mathrm{t}_{\mathrm{rr}} \\ \mathrm{Q}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RRM}} \end{gathered}$	Reverse recovery time Reverse recovery charge Reverse recovery current	$\begin{aligned} & \mathrm{I}_{\mathrm{SD}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=60 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \\ & \text { (see Figure } 21 \text {) } \end{aligned}$	-	$\begin{gathered} \hline 500 \\ 9 \\ 36 \end{gathered}$		$\begin{gathered} \mathrm{ns} \\ \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$
$\begin{gathered} \mathrm{t}_{\mathrm{rr}} \\ \mathrm{Q}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RRM}} \end{gathered}$	Reverse recovery time Reverse recovery charge Reverse recovery current	$\begin{aligned} & \mathrm{I}_{\mathrm{SD}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=60 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{Tj}=150^{\circ} \mathrm{C}(\text { see } \\ & \text { Figure 21) } \end{aligned}$	-	$\begin{gathered} 624 \\ 11 \\ 37 \end{gathered}$		$\begin{gathered} \mathrm{ns} \\ \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$

1. Pulsed: pulse duration $=300 \mu$ s, duty cycle 1.5%

Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$B_{\text {GSO }}$	Gate-source breakdown voltage	Igs $\pm 1 \mathrm{~mA}$, (open drain)	30	-	V	

The built-in-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for TO-220F and I^{2} PAKFP

Figure 3. Thermal impedance for TO-220FP and and I^{2} PAKFP

Figure 4. Safe operating area for TO-220
Figure 5. Thermal impedance for TO-220

Figure 6. Safe operating area for TO-247
Figure 7. Thermal impedance for TO-247

Figure 8. Output characteristics

Figure 9. Transfer characteristics

Figure 10. Gate charge vs gate-source voltage Figure 11. Static drain-source on-resistance

Figure 12. Capacitance variations

Figure 14. Normalized gate threshold voltage vs temperature

Figure 15. Normalized on-resistance vs temperature

Figure 16. Source-drain diode forward characteristics

Figure 17. Normalized $B_{\text {VDss }}$ vs temperature

Figure 18. Maximum avalanche energy vs starting Tj

3 Test circuits

Figure 19. Switching times test circuit for resistive load

Figure 20. Gate charge test circuit

Figure 22. Unclamped inductive load test circuit

Figure 23. Unclamped inductive waveform
Figure 24. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

Table 9. TO-220FP mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.4		4.6
B	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
H	10		10.4
L2	28.6		30.6
L3	9.8		10.6
L4	2.9		3.6
L5	15.9		16.4
L6	9		9.3
L7	3		3.2
Dia			

Figure 25. TO-220FP drawing

Table 10. $\quad I^{2}$ PAKFP mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.40		4.60
B	2.50		2.70
D	2.50		2.75
D1	0.65		0.85
E	0.45		0.70
F	0.75		1.00
F1			1.20
G	4.95	-	5.20
H	10.00		10.40
L1	21.00		23.00
L2	13.20		14.10
L3	10.55		10.85
L4	2.70		3.20
L5	0.85		1.25
L6	7.30		7.50

Figure 26. I^{2} PAKFP drawing

Table 11. TO-220 type A mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
c	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
e	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

Figure 27. TO-220 type A drawing

Table 12. TO-247 mechanical data

Dim.	mm.		
	Min.	Typ.	Max.
A	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
c	0.40		0.80
D	19.85		20.15
E	15.45		15.75
e	5.30		5.60
L	14.20		14.80
L1	3.70		4.30
L2			
\varnothing P	3.55		5.50
$\varnothing R$	4.50		5.50
S	5.30		

Figure 28. TO-247 drawing

5 Revision history

Table 13. Document revision history

Date	Revision	Changes
15-May-2009	1	First release.
02-Sep-2010	2	Document status promoted from preliminary data to datasheet.
21-Jun-2012	3	Added new device in I'PAKFP. Table 1: Device summary, Table 2: Absolute maximum ratings, Table 3: Thermal data, Figure 2: Safe operating area for TO220FP and ${ }^{2}$ PPAKFP, Figure 3: Thermal impedance for TO220FP and I^{2} PAKFP have been modified accordingly. Table 10: I^{2} PAKFP mechanical data and Figure 26: l^{2} PAKFP drawing have been added.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7

