

STW23N80K5

N-channel 800 V, 0.23 Ω typ., 16 A MDmesh™ K5 Power MOSFET in a TO-247 package

Datasheet - production data

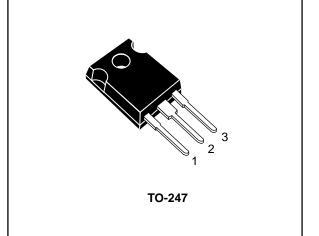
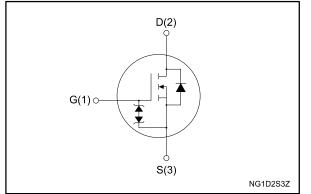



Figure 1: Internal schematic diagram

Features

Order code	VDS	RDS(on) max.	ID	Ртот
STW23N80K5	800 V	0.28 Ω	16 A	190 W

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh[™] K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STW23N80K5	23N80K5	TO-247	Tube

DocID028280 Rev 1

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-247 package information	9
5	Revisio	n history	11

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±30	V
	Drain current (continuous) at $T_{case} = 25 \text{ °C}$		А
lD	Drain current (continuous) at T _{case} = 100 °C	10	A
IDM ⁽¹⁾	Drain current (pulsed)	64	А
Ρτοτ	Total dissipation at T _{case} = 25 °C	190	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	4.5	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	v/ns
T _{stg}	Storage temperature		°C
Tj	Operating junction temperature		C

Notes:

 $^{\left(1\right) }$ Pulse width is limited by safe operating area.

 $^{(2)}$ I_SD \leq 16 A, di/dt=100 A/µs; V_DS peak < V(BR)DSS, V_DD = 80% V(BR)DSS.

 $^{(3)}$ V_{DS} ≤ 640 V

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj} -case	Thermal resistance junction-case	0.66	9 0 AA/
R _{thj-amb}	Thermal resistance junction-ambient 50		°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar ⁽¹⁾	Avalanche current, repetitive or not repetitive	5	А
Eas ⁽²⁾	Single pulse avalanche energy	400	mJ

Notes:

 $^{\left(1\right) }$ Pulse width limited by $T_{jmax}.$

 $^{(2)}$ starting T_{j} = 25 °C, I_{D} = $I_{AR},\,V_{DD}$ = 50 V.

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

	Table 5: Static						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 V, I_D = 1 mA$	800			V	
	Zara gata valtaga drain	$V_{GS} = 0 V, V_{DS} = 800 V$			1		
IDSS	Zero gate voltage drain current	$\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \ V, \ V_{DS} = 800 \ V, \\ T_{case} = 125 \ ^{\circ}C \end{array}$			50	μA	
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = ±20 V			±10	μΑ	
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \ \mu A$	3	4	5	V	
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 8 \text{ A}$		0.23	0.28	Ω	

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1000	I	
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	65	I	pF
Crss	Reverse transfer capacitance	V _{GS} = 0 V	-	1.5	-	μ.
C _{O(tr)} ⁽¹⁾	Equivalent output capacitance	V_{DS} = 0 to 640 V, V_{GS} = 0 V	-	165	-	<u>م</u> ۲
C _{O(er)} ⁽²⁾	Equivalent output capacitance	$V_{DS} = 0$ to 640 V, $V_{GS} = 0$ V	-	59	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	4.7	-	Ω
Qg	Total gate charge	$V_{DD} = 640 \text{ V}, I_D = 16 \text{ A},$	-	33	-	
Qgs	Gate-source charge	V _{GS} = 10 V (see Figure 14: "Test circuit for gate charge	-	6	-	nC
Q _{gd}	Gate-drain charge	behavior")	-	25	-	

Table 6: Dynamic

Notes:

 $^{(1)}$ Time related is defined as a constant equivalent capacitance giving the same charging time as C_{OSS} when V_{DS} increases from 0 to 80% V_{DSS} .

 $^{(2)}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as Coss when V_Ds increases from 0 to 80% V_Dss

Table 7. Owitching times							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 8 \text{ A}$	-	14	-		
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit for	-	9	-		
t _{d(off)}	Turn-off delay time	resistive load switching times"	-	48	-	ns	
t _f	Fall time	and Figure 18: "Switching time waveform")	-	9	-		

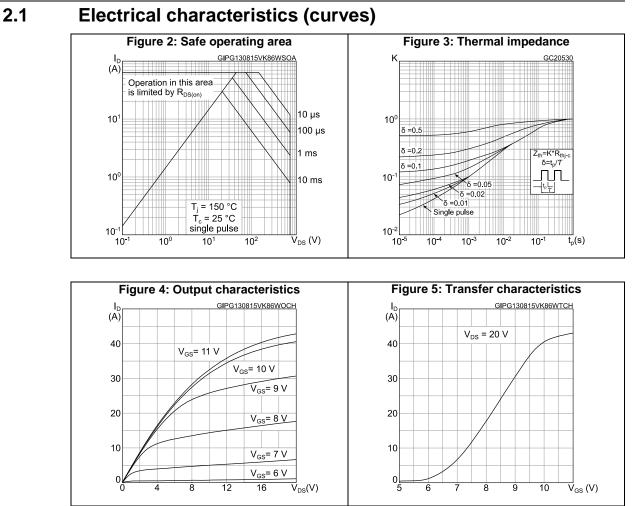
Table	7: Swi	itching	times
-------	--------	---------	-------

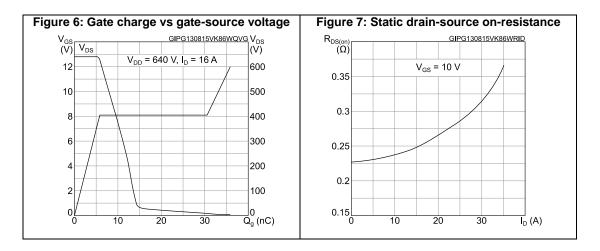
Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		16	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		64	А
Vsd ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 16 A	-		1.5	V
trr	Reverse recovery time	I _{SD} = 16 A, di/dt = 100 A/µs,	-	410		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 15: "Test circuit for inductive load	-	7		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	34		А
trr	Reverse recovery time	I _{SD} = 16 A, di/dt = 100 A/µs,	-	650		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{j} = 150 \text{ °C}$ (see Figure 15: "Test circuit for	-	10		μC
Irrm	Reverse recovery current	inductive load switching and diode recovery times")	-	32		A

Notes:

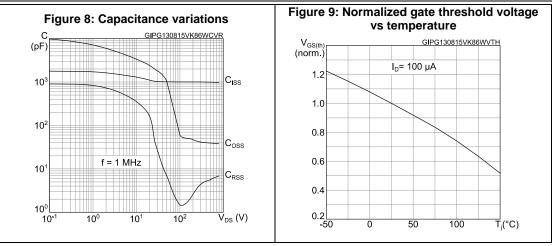
 $^{\left(1\right) }$ Pulse width is limited by safe operating area.

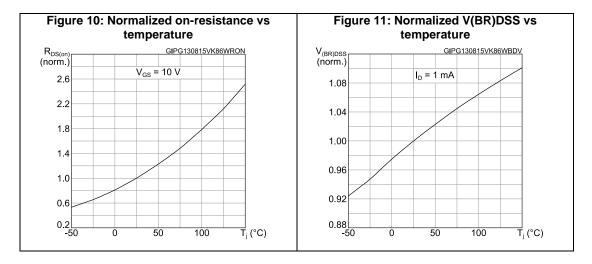

 $^{(2)}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

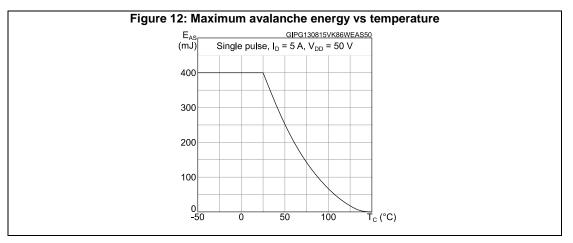

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _(BR) GSO	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_D = 0 \text{ A}$	±30	-	-	V

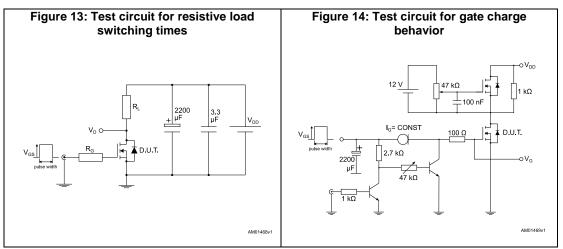
The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

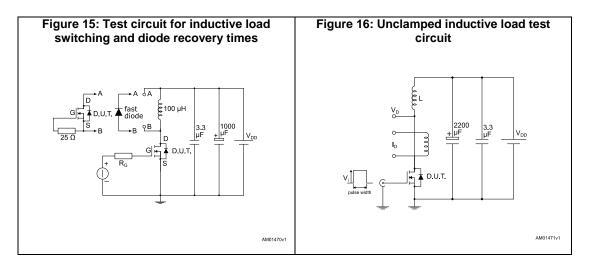


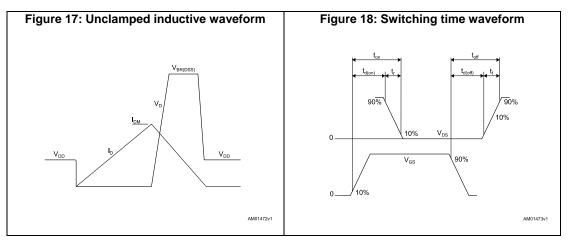




Electrical characteristics

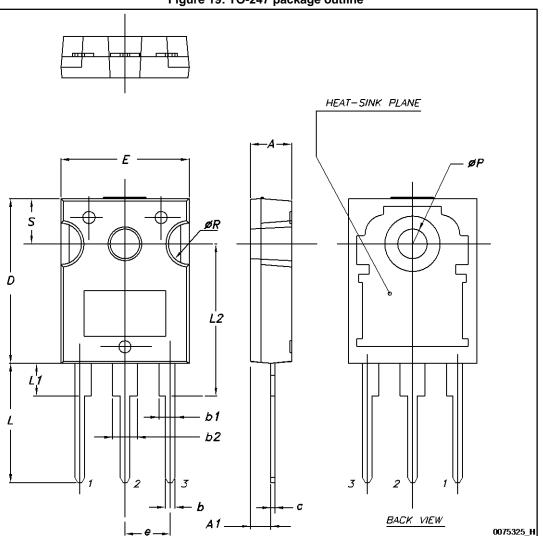






57

3 Test circuits



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-247 package information

Package information

Table 10: TO-247 package mechanical data

STW23N80K5

Dim.	mm.							
Dini.	Min.	Тур.	Max.					
A	4.85		5.15					
A1	2.20		2.60					
b	1.0		1.40					
b1	2.0		2.40					
b2	3.0		3.40					
С	0.40		0.80					
D	19.85		20.15					
E	15.45		15.75					
е	5.30	5.45	5.60					
L	14.20		14.80					
L1	3.70		4.30					
L2		18.50						
ØP	3.55		3.65					
ØR	4.50		5.50					
S	5.30	5.50	5.70					

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
27-Aug-2015	1	First release.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B