STW23N85K5

N-channel 850 V, 0.2 Ω typ., 19 A MDmesh™ K5 Power MOSFET in a TO-247 package

Datasheet - production data

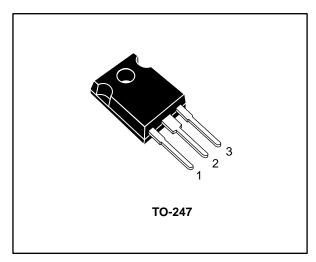
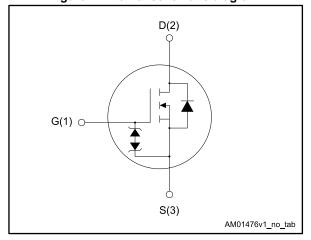



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	Ртот
STW23N85K5	850 V	0.275 Ω	19 A	250 W

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STW23N85K5	23N85K5	TO-247	Tube

Contents STW23N85K5

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	9
4	Packag	e information	10
	4.1	TO-247 package information	10
5	Revisio	n history	12

STW23N85K5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V_{GS}	Gate-source voltage	±30	V	
	Drain current (continuous) at T _{case} = 25 °C	19	۸	
ID	Drain current (continuous) at T _{case} = 100 °C	12.4	Α	
I _{DM} ⁽¹⁾	Drain current (pulsed)	250	А	
P _{TOT}	Total dissipation at T _{case} = 25 °C	250	W	
dv/dt ⁽²⁾	Peak diode recovery voltage slope	6	V/ns	
T _{stg}	Storage temperature		°C	
T _j	Operating junction temperature	-55 to 150 °C		

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.5	۰۵۸۸
R _{thj-amb}	Thermal resistance junction-ambient	45	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive	6	Α
E _{AS} ⁽²⁾	Single pulse avalanche energy	200	mJ

Notes:

 $^{^{\}left(1\right) }$ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ $I_{SD} \leq$ 19 A, di/dt=100 A/µs; V_{DS} peak < $V_{(BR)DSS},$ V_{DD} = 80% $V_{(BR)DSS}.$

 $^{^{(1)}}$ Pulse width limited by T_{jmax} .

 $^{^{(2)}}$ starting $T_j = 25~^{\circ}\text{C},~I_D = I_{AR},~V_{DD} = 50~\text{V}.$

Electrical characteristics STW23N85K5

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	850			٧
Zara sata valta sa	$V_{GS} = 0 \text{ V}, V_{DS} = 850 \text{ V}$			10		
I _{DSS}	I _{DSS} Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 850 \text{ V},$ $T_{case} = 125 \text{ °C}$			50	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$	3	4	5	>
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 9.5 A		0.2	0.275	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		ı	1650	ı	
C _{oss}	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	ı	115	ı	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	ı	2	ı	ρı
Coss eq. (1)	Equivalent output capacitance	$V_{DS} = 0$ to 680 V, $V_{GS} = 0$ V	-	185	-	pF
R _G	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	1	3.5	ı	Ω
Q_g	Total gate charge	$V_{DD} = 520 \text{ V}, I_D = 60 \text{ A},$	ı	38	ı	
Q_{gs}	Gate-source charge	V _{GS} = 10 V (see <i>Figure 17:</i>	ı	11		nC
Q_gd	Gate-drain charge	"Gate charge test circuit")	ı	20	ı	

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 400 \text{ V}, I_D = 9.5 \text{ A}$	-	22	-	
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 16: "Switching times	-	14	-	
t _{d(off)}	Turn-off delay time	test circuit for resistive load"	-	55	-	ns
t _f	Fall time	and Figure 21: "Switching time waveform")	-	8	-	

 $^{^{(1)}}$ $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 8: Source-drain diode

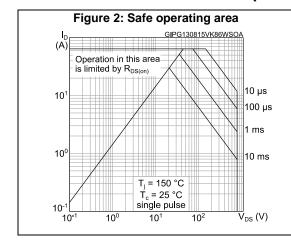
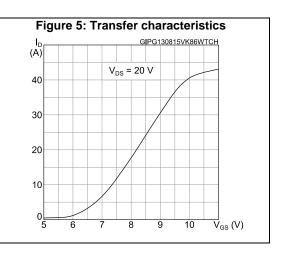
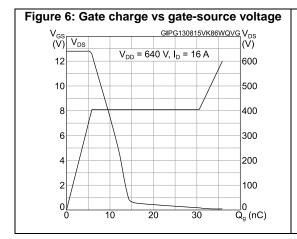
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		ı		19	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		76	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 19 A	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 19 A, di/dt = 100 A/μs,	1	510		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V (see Figure 18: "Test circuit for inductive load	-	11		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	43		Α
t _{rr}	Reverse recovery time	I _{SD} = 19 A, di/dt = 100 A/µs,	-	684		ns
Q _{rr}	Reverse recovery charge	V_{DD} = 60 V, T_j = 150 °C (see Figure 18: "Test circuit for	-	14		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	41		Α

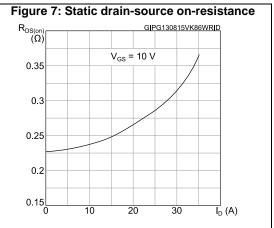
Notes:

⁽¹⁾ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)


Figure 3: Thermal impedance K

GC20530 $\delta = 0.5$ $\delta = 0.2$ $\delta = 0.1$ $\delta = 0.05$ $\delta = 0.05$ $\delta = 0.01$ Single pulse $\delta = 0.01$ $\delta = 0.01$

Figure 4: Output characteristics GIPG130815VK86WOCH I_D (A) 40 $V_{GS} = 10 \text{ V}$ $V_{GS} = 9 V$ 30 $V_{GS} = 8 \text{ V}$ 20 $V_{GS} = 7 V$ 10 $V_{GS} = 6 V$ $V_{GS} = 5 V$ 12 16 $\overrightarrow{V}_{DS}(V)$

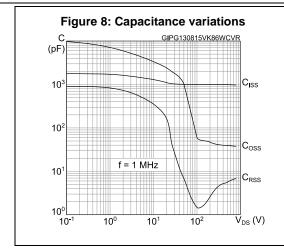
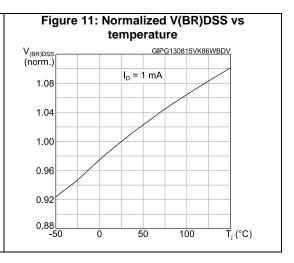
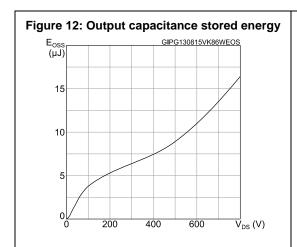




Figure 10: Normalized on-resistance vs temperature

R_{DS(on)} GIPG130815VK86WRON
(norm.)
2.6
2.2
1.8
1.4
1.0
0.6
0.2
-50
0
50
100
T_j (°C)

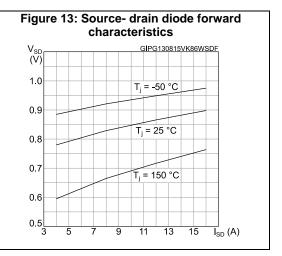


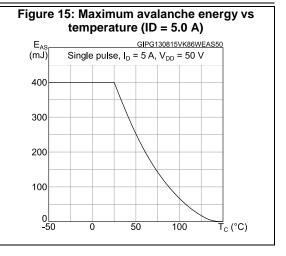
Figure 14: Maximum avalanche energy vs temperature (ID = 3.5 A)

E_{AS} GIPG130815VK86WEAS35 (mJ) Single pulse, I_D = 3.5 A, V_{DD} = 50 V

600

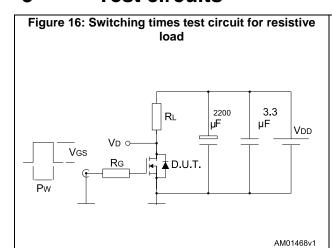
400

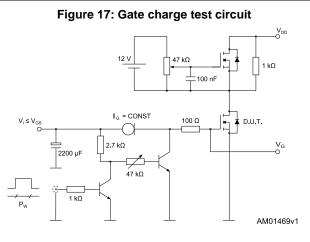
200

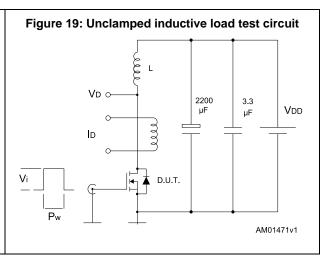

-50

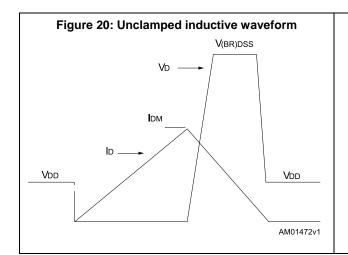
0

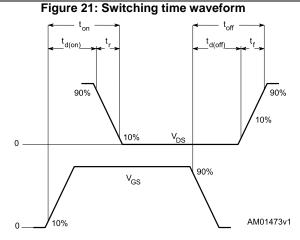
50


100


T_i (°C)




STW23N85K5 Test circuits


3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-247 package information

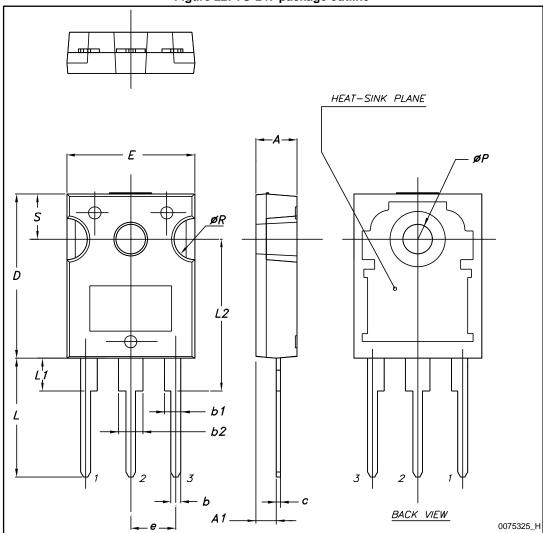


Figure 22: TO-247 package outline

Table 9: TO-247 package mechanical data

Dim	·	mm.	
Dim.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
Е	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

Revision history STW23N85K5

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
06-Aug-2012	1	First release.
21-Jan-2014	2	Document status promoted from preliminary to production data. Added Figure 12: Maximum avalanche energy vs temperature.
13-Aug-2015	3	Text and formatting changes throughout document. On cover page: - updated Title, Features and Description Updated Section Electrical characteristics Updated Section Electrical characteristics (curves) Updated and renamed Section Package information (was Package mechanical data)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B