

STW45NM50

N-channel 500 V, 0.08 Ω typ., 45 A MDmesh™ Power MOSFET in a TO-247 package

Datasheet - production data

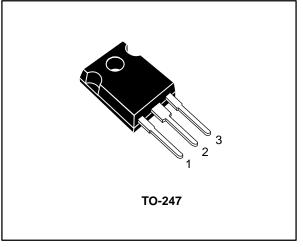
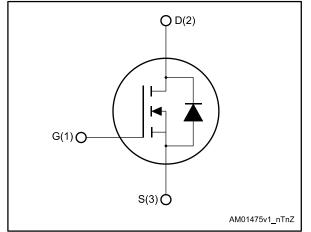



Figure 1: Internal schematic diagram

Features

Order code	VDS	R _{DS(on)} max	ΙD
STW45NM50	500 V	0.1 Ω	45 A

- 100% avalanche tested
- High dv/dt and avalanche capabilities
- Low input capacitance and gate charge •
- Low gate input resistance

Applications

Switching applications

Description

This N-channel Power MOSFET is developed using STMicroelectronics' revolutionary MDmesh[™] technology, which associates the multiple drain process with the company's PowerMESH[™] horizontal layout. This device offer extremely low on-resistance, high dv/dt and excellent avalanche characteristics. Utilizing ST's proprietary strip technique, this Power MOSFET boasts an overall dynamic performance which is superior to similar products on the market.

Table 1: Device summary

Order code	Marking	Package	Packaging
STW45NM50	W45NM50	TO-247	Tube

DocID8477 Rev 6

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-247 package information	9
5	Revisio	on history	11

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{GS}	Gate-source voltage	±30	V	
ID	Drain current (continuous) at $T_C = 25 \text{ °C}$	45	А	
lo	Drain current (continuous) at T _c = 100 °C	28.4	А	
IDM ⁽¹⁾	Drain current (pulsed)	180	А	
Ртот	Total dissipation at $T_C = 25 \ ^{\circ}C$	390	W	
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns	
T _{stg}	Storage temperature range	EE to 150 %C		
Tj	Operating junction temperature range	-55 to 150	°C	

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $\label{eq:ISD} \ensuremath{^{(2)}}\mathsf{I}_{SD} \leq 45 \mbox{ A, di/dt} \leq 400 \mbox{ A/}\mu \mbox{s, V}_{DS(peak)} \leq V_{(BR)DSS}, \ensuremath{V_{DD}} \leq 80\% \mbox{ V}_{(BR)DSS}$

Table 3: Thermal data					
Symbol Parameter Value U					
Rthj-case	Thermal resistance junction-case	0.32	°C/W		
R _{thj-amb}	Thermal resistance junction-ambient	30	°C/W		

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by $T_{j max}$)	15	А
Eas	Single pulse avalanche energy (starting T _J =25 °C, I _D =I _{AR} , V _{DD} =50 V)	700	mJ

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5: On/off states						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0 V	500			V
	Zana mata walta na duala	V _{GS} = 0 V, V _{DS} = 500 V			10	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 500 V,$ $T_{C} = 125 °C (1)$			100	μA
lgss	Gate-body leakage current	$V_{DS} = 0 V, V_{GS} = \pm 30 V$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3	4	5	V
RDS(on)	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 22.5 \text{ A}$		0.08	0.1	Ω

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	3290	-	pF
Coss	Output capacitance	$V_{DS} = 25 V, f = 1 MHz,$	-	865	-	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	-	140	-	pF
Coss eq. ⁽¹⁾	Equivalent output capacitance	$V_{GS} = 0 V, V_{DS} = 0 to 400 V$	-	270	-	pF
Qg	Total gate charge	$V_{DD} = 400 V, I_D = 45 A,$	-	113	-	nC
Q _{gs}	Gate-source charge	$V_{GS} = 10 V$ (see Figure 14:	-	17	-	nC
Q _{gd}	Gate-drain charge	"Test circuit for gate charge behavior")	-	82	-	nC
Rg	Gate input resistance	f = 1 MHz, I _D = 0 A	-	1.7	-	Ω

Table 6: Dynamic

Notes:

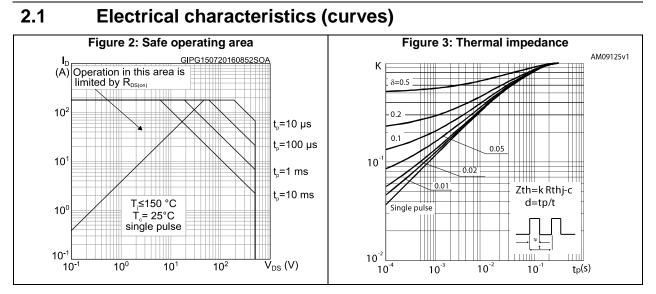
Notes:

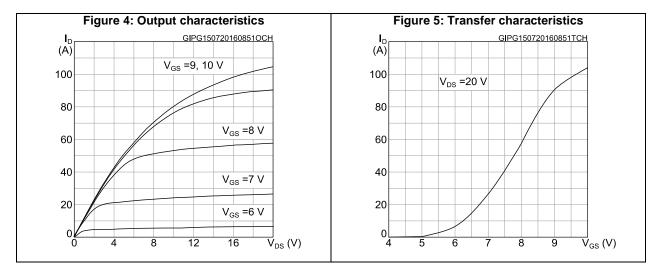
 $^{(1)}C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS}

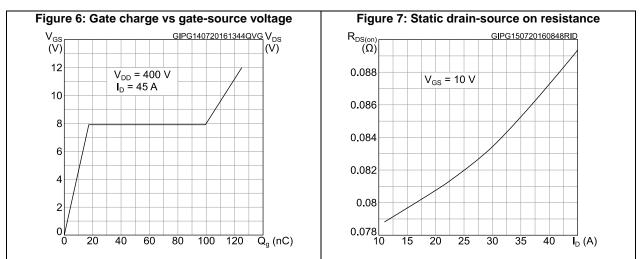
Electrical characteristics

	Table 7: Switching times							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
t _{d(on)}	Turn-on delay time	$V_{DD} = 250 \text{ V}, I_D = 22.5 \text{ A}, R_G = 4.7 \Omega,$	-	29.1	-	ns		
tr	Rise time	V _{GS} = 10 V (see Figure 15: "Test circuit for inductive load switching and diode recovery times")		73.6	-	ns		
t _{r(Voff)}	Off-voltage rise time	$V_{DD} = 400 \text{ V}, I_D = 45 \text{ A}, R_G = 4.7 \Omega,$ $V_{GS} = 10 \text{ V}$ (see <i>Figure 15: "Test</i>		20.8	-	ns		
t _f	Fall time	circuit for inductive load switching and	-	58.3	-	ns		
tc	Cross-over time	diode recovery times")		67.6	-	ns		

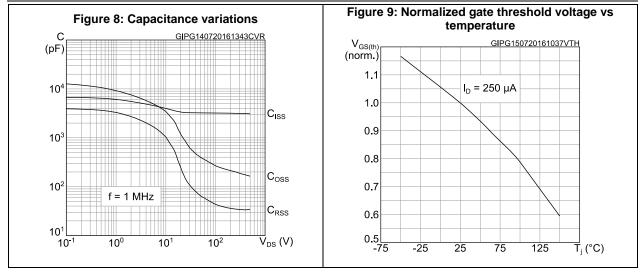
Table 8: Source-drain diode

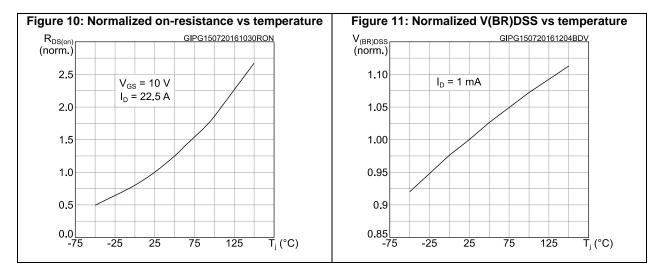

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		45	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		180	А
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 45 \text{ A}, V_{GS} = 0 \text{ V}$	-		1.5	V
trr	Reverse recovery time	I _{SD} = 45 A, di/dt = 100 A/µs	-	454		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 15: "Test circuit for inductive load	-	9380		nC
I _{RRM}	Reverse recovery current	switching and diode recovery times")		41.3		А
trr	Reverse recovery time	I _{SD} = 45 A, di/dt = 100 A/µs	-	567		ns
Qrr	Reverse recovery charge	V _{DD} = 100 V, T _j = 150 °C (see <i>Figure 15: "Test circuit for</i>	-	12700		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	44.8		А

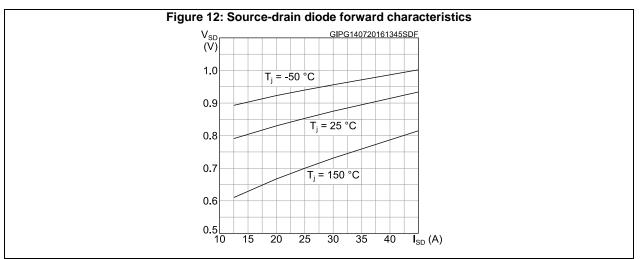

Notes:


 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Pulse}}$ width limited by safe operating area.

 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

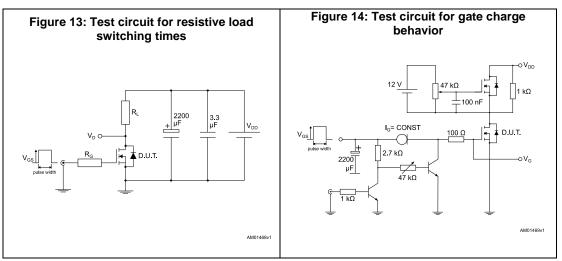

DocID8477 Rev 6

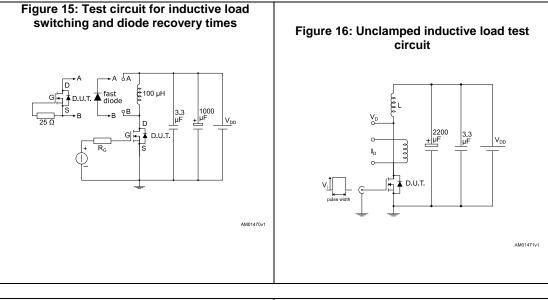

6/12

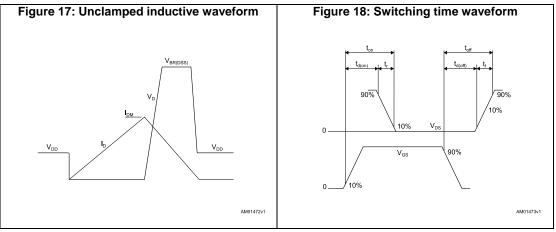

STW45NM50

57

Electrical characteristics

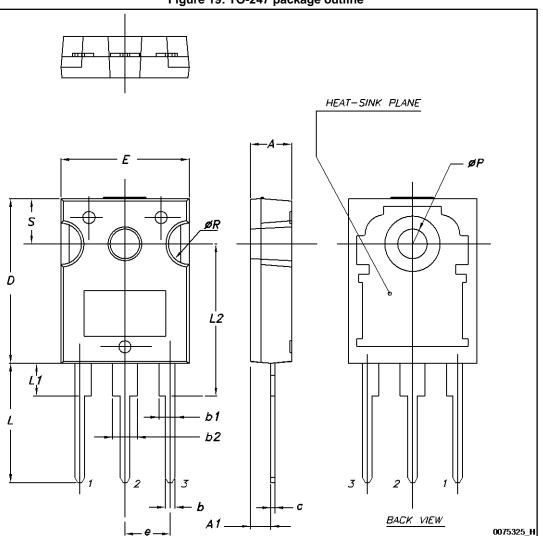






DocID8477 Rev 6

3 Test circuits


8/12

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-247 package information

Package information

Table 9: TO-247 package mechanical data

STW45NM50

Dim.		mm			
Dini.	Min.	Тур.	Max.		
A	4.85		5.15		
A1	2.20		2.60		
b	1.0		1.40		
b1	2.0		2.40		
b2	3.0		3.40		
С	0.40		0.80		
D	19.85		20.15		
E	15.45		15.75		
е	5.30	5.45	5.60		
L	14.20		14.80		
L1	3.70		4.30		
L2		18.50			
ØP	3.55		3.65		
ØR	4.50		5.50		
S	5.30	5.50	5.70		

5 Revision history

Table 10: Document revis

Date	Revision	Changes
30-Mar-2005	4	Modified value on Source drain diode
23-Jul-2009	5	Modified values on Switching times
18-Jul-2016	6	Modified: Table 2: "Absolute maximum ratings", Table 3: "Thermal data", Table 4: "Avalanche characteristics", Table 5: "On/off states", Table 6: "Dynamic", Table 7: "Switching times" and Table 8: "Source-drain diode" Modified: Section 5.1: "Electrical characteristics (curves)" Updated: Section 7.1: "TO-247 package information"

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B