

STW45NM60

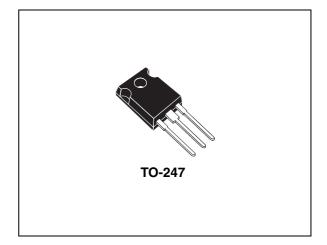
N-channel 650V@Tjmax - 0.09Ω - 45A - TO-247 MDmesh[™] Power MOSFET

Features

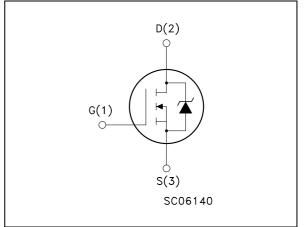
Туре	$\begin{array}{ c c c c c } V_{DSS} & R_{DS(on)} \\ \hline \hline & & 650V \\ \hline & & < 0.110 \\ \hline \end{array}$		I _D
STW45NM60	650V	< 0.11Ω	45A

- High dv/dt and avalanche capabilities
- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Description


The MDmesh[™] is a new revolutionary Power MOSFET technology that associates the multiple drain process with the Company's PowerMESH™ horizontal layout. The resulting product has an outstanding low on-resistance, impressively high dv/dt and excellent avalanche characteristics. The adoption of the Company's proprietary strip technique yields overall dynamic performance that is significantly better than that of similar competitor's products.

Application


Switching application

Part number	Marking	Package	Packaging
STW45NM60	W45NM60	TO-247	Tube

Internal schematic diagram

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuit	8
4	Package mechanical data	9
5	Revision history1	1

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate- source voltage	±30	V
۱ _D	Drain current (continuous) at T _C = 25°C	45	Α
I _D	Drain current (continuous) at T _C = 100°C	28	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	180	Α
P _{TOT}	Total dissipation at $T_{C} = 25^{\circ}C$	417	W
	Derating factor	3.33	W/°C
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	-65 to 150	°C
Тj	Max. operating junction temperature	150	°C

1. Pulse width limited by safe operating area

2. $I_{SD} \le 45A$, di/dt $\le 400A/\mu s$, $V_{DD} \le 80\% V_{(BR)DSS}$

Table 2. Thermal data

Symbol	Symbol Parameter		Unit
Rthj-case	Thermal resistance junction-case	0.3	°C/W
Rthj-amb	Thermal resistance junction-amb	30	°C/W
Τ _Ι	Maximum lead temperature for soldering purpose	300	°C

Table 3. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T _j max)	15	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 35 \text{ V}$)	850	mJ

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

	On/on states					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 250 μA, V _{GS} = 0	600			V
	Zero gate voltage	V _{DS} = Max rating			10	μA
I _{DSS}	Drain current ($V_{GS} = 0$)	V_{DS} = Max rating, T_{C} = 125 °C			100	μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 30V$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10V, I _D = 22.5A		0.09	0.11	Ω

Table 4. On/off states

Table 5. Dynamic

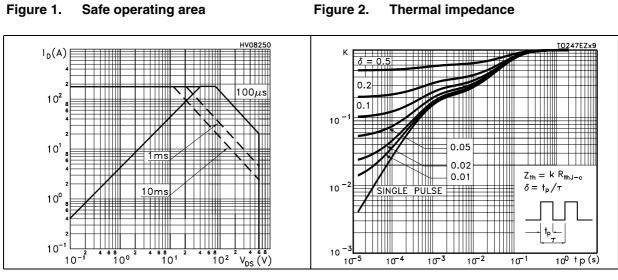
Parameter	Test conditions	Min.	Тур.	Max.	Unit
Forward transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max,}$ $I_{D}= 22.5A$		30		S
Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25V$, f = 1 MHz, $V_{GS} = 0$		3800 1250 80		pF pF pF
Equivalent output capacitance	$V_{GS} = 0V$, $V_{DS} = 0V$ to 480V		340		pF
Gate input resistance	f=1 MHz Gate DC Bias = 0 test signal level = 20mV open drain		1.4		Ω
Total gate charge	V _{DD} = 400V, I _D = 45A,		96	134	nC
Gate-source charge	V _{GS} = 10V		31		nC
Gate-drain charge	Figure 14		43		nC
	Forward transconductance Input capacitance Output capacitance Reverse transfer capacitance Equivalent output capacitance Gate input resistance Total gate charge Gate-source charge	Forward transconductance $V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_D = 22.5A$ Input capacitance $V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$ Output capacitance $V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$ Reverse transfer capacitance $V_{GS} = 0V, V_{DS} = 0V \text{ to } 480V$ Equivalent output capacitance $V_{GS} = 0V, V_{DS} = 0V \text{ to } 480V$ Gate input resistancef=1 MHz Gate DC Bias = 0 test signal level = 20mV open drainTotal gate charge Gate-source charge $V_{DD} = 400V, I_D = 45A,$ $V_{GS} = 10V$	Forward transconductance $V_{DS} > I_{D(on)} \times R_{DS(on)max}$, $I_D = 22.5A$ Input capacitance $V_{DS} = 25V$, f = 1 MHz, $V_{GS} = 0$ Output capacitance $V_{DS} = 25V$, f = 1 MHz, $V_{GS} = 0$ Reverse transfer capacitance $V_{GS} = 0V$, $V_{DS} = 0V$ to 480VEquivalent output capacitance $V_{GS} = 0V$, $V_{DS} = 0V$ to 480VGate input resistancef=1 MHz Gate DC Bias = 0 test signal level = 20mV open drainTotal gate charge Gate-source charge $V_{DD} = 400V$, $I_D = 45A$, $V_{GS} = 10V$	Forward transconductance $V_{DS} > I_{D(on)} \times R_{DS(on)max,}$ $I_D = 22.5A$ 30Input capacitance Output capacitance Reverse transfer capacitance $V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$ 3800 1250 80Equivalent output capacitance $V_{GS} = 0V, V_{DS} = 0V \text{ to } 480V$ 340Gate input resistancef=1 MHz Gate DC Bias = 0 test signal level = 20mV open drain1.4Total gate charge Gate-source charge $V_{DD} = 400V, I_D = 45A, V_{GS} = 10V$ 96 31	Forward transconductance $V_{DS} > I_{D(on)} \times R_{DS(on)max}$, $I_D = 22.5A$ 30Input capacitance Output capacitance Reverse transfer capacitance $V_{DS} = 25V$, f = 1 MHz, $V_{GS} = 0$ 3800 1250 80Equivalent output capacitance $V_{GS} = 0V$, $V_{DS} = 0V$ to 480V340Equivalent output capacitancef=1 MHz Gate DC Bias = 0 test signal level = 20mV open drain1.4Total gate charge Gate-source charge $V_{DD} = 400V$, $I_D = 45A$, $V_{GS} = 10V$ 96 31

1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%.

2. $C_{oss~eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

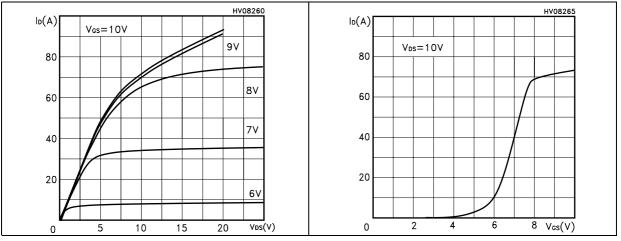
	e interning timee					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on delay time Rise time	$V_{DD} = 250V, I_D = 22.5A$ $R_G = 4.7\Omega V_{GS} = 10V$ Figure 13		30 20		ns ns
t _{r(Voff)} t _f t _c	Off-voltage rise time Fall time Cross-over time	$\label{eq:VDD} \begin{split} V_{DD} &= 400 \text{V}, \text{I}_D = 45 \text{A}, \\ \text{R}_{\text{G}} &= 4.7 \Omega, \ \text{V}_{\text{GS}} = 10 \text{V} \\ \hline \textit{Figure 13} \end{split}$		16 23 40		ns ns ns

Table 6.Switching times

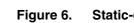

Table 7.Source drain diode

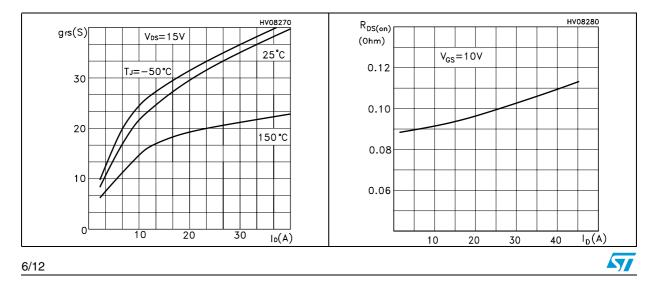
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current				45	А
I _{SDM}	Source-drain current (pulsed)				180	А
V _{SD} ⁽¹⁾	Forward on voltage	$I_{SD} = 45A, V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 45A, di/dt = 100A/μs, V _{DD} = 100 V, T _j = 25°C <i>Figure 15</i>		508 10 40		ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 45A, di/dt = 100A/μs, V _{DD} = 100 V, T _j = 150°C <i>Figure 15</i>		650 14 43		ns μC Α

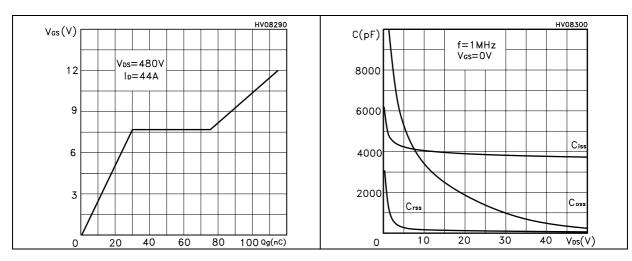
1. Pulsed: Pulse duration = $300 \ \mu$ s, duty cycle 1.5%.


57

2.1 Electrical characteristics (curves)







Static-drain source on resistance

Gate charge vs gate-source voltage Figure 8. Figure 7. **Capacitance variations**

Figure 9. vs temperature

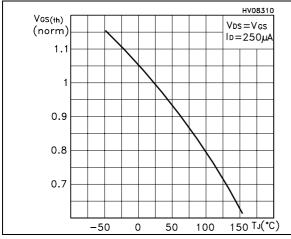
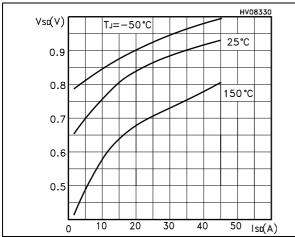
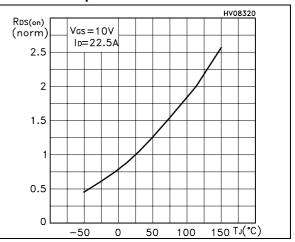
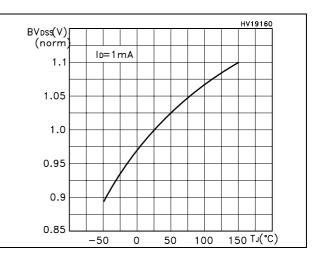
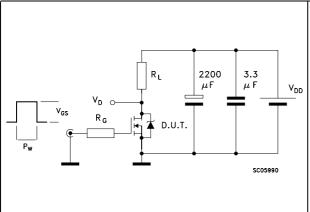
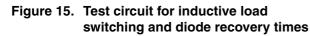



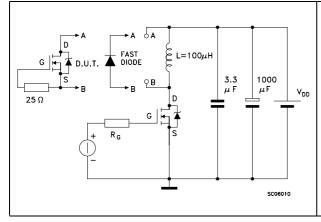
Figure 11. Source-drain diode forward characteristics

57

Normalized gate threshold voltage Figure 10. Normalized on resistance vs temperature


Figure 12. Normalized BV_{DSS} vs temperature



3 Test circuit

Figure 13. Switching times test circuit for resistive load

8/12

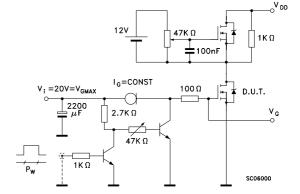
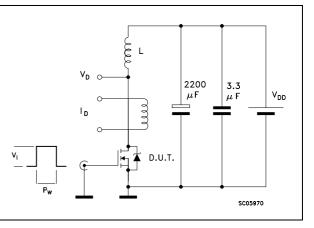
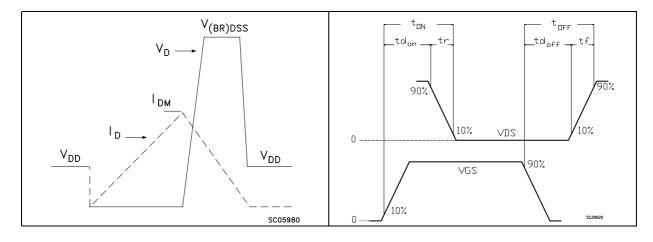
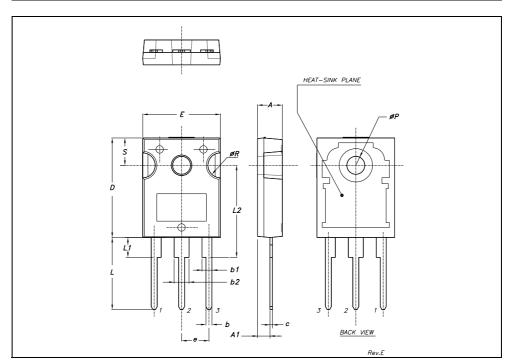




Figure 14. Gate charge test circuit

Figure 16. Unclamped inductive load test circuit


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: *www.st.com*

DIM.		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.85		5.15	0.19		0.20
A1	2.20		2.60	0.086		0.102
b	1.0		1.40	0.039		0.055
b1	2.0		2.40	0.079		0.094
b2	3.0		3.40	0.118		0.134
С	0.40		0.80	0.015		0.03
D	19.85		20.15	0.781		0.793
E	15.45		15.75	0.608		0.620
е		5.45			0.214	
L	14.20		14.80	0.560		0.582
L1	3.70		4.30	0.14		0.17
L2		18.50			0.728	
øP	3.55		3.65	0.140		0.143
øR	4.50		5.50	0.177		0.216
S		5.50			0.216	1

TO-247 MECHANICAL DATA

5 Revision history

Date	Revision	Changes
05-Mar-2005	5	Complete document with curves
16-May-2006	6	The document has been reformatted
18-Dec-2006	7	Updates curves: Figure 1., Figure 4. and Figure 6.
02-Apr-2007	8	Figure 1. has been updated.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7