N-channel 600 V , $60 \mathrm{~m} \Omega$ typ., 42 A MDmesh M2 Power MOSFET in a TO-247 long leads package

Features

TO-247 long leads

Order code	V $_{\text {DS }} @$ TJmax.	R $_{\text {DS(on) }}$ max.	I_{D}
STWA48N60M2	650 V	$70 \mathrm{~m} \Omega$	42 A

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Product status

STWA48N60M2

Device summary	
Order code	STWA48N60M2
Marking	48N60M2
Package	TO-247 long leads
Packing	Tube

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	± 25	V
I_{D}	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	42	A
I_{D}	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	26	A
$\mathrm{I}_{\mathrm{DM}}{ }^{(1)}$	Drain current (pulsed)	168	A
$\mathrm{P}_{\text {TOT }}$	Total power dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	300	W
$\mathrm{dv} / \mathrm{dt}^{(2)}$	Peak diode recovery voltage slope	15	$\mathrm{~V} / \mathrm{ns}$
$\mathrm{dv} / \mathrm{dt}^{(3)}$	MOSFET dv/dt ruggedness	50	$\mathrm{~V} / \mathrm{ns}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-55 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Operating junction temperature range		

1. Pulse width limited by safe operating area.
2. $I_{S D} \leq 42 \mathrm{~A}, d i / d t \leq 400 \mathrm{~A} / \mu \mathrm{s} ; V_{D S(\text { peak })}<V_{(B R) D S S}, V_{D D}=400 \mathrm{~V}$
3. $V_{D S} \leq 480 \mathrm{~V}$

Table 2. Thermal data

Symbol	Parameter	Value	Unit
$R_{\text {thj-case }}$	Thermal resistance junction-case	0.42	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{thj} \text {-amb }}$	Thermal resistance junction-ambient	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
$I_{A R}$	Avalanche current, repetitive or not repetitive (pulse width limited by $T_{j m a x .) ~}$	7	A
E_{AS}	Single pulse avalanche energy (starting $\left.\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{AR}} ; \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}\right)$	1	J

2

 Electrical characteristics($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Table 4. On /off-states

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	$\begin{array}{l}\text { Drain-source } \\ \text { breakdown voltage }\end{array}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	600			V
$\mathrm{I}_{\mathrm{DSS}}$	$\begin{array}{l}\text { Zero-gate voltage } \\ \text { drain current }\end{array}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=600 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=600 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}^{(1)}$			

1. Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{C}_{\text {iss }}$	Input capacitance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=100 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	3060	-	pF
Coss	Output capacitance		-	143	-	pF
$\mathrm{Cr}_{\text {rss }}$	Reverse transfer capacitance		-	4.3	-	pF
C oss eq. ${ }^{(1)}$	Equivalent output capacitance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ to 480 V	-	630	-	pF
R_{G}	Intrinsic gate resistance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~A}$	-	4.6	-	Ω
Q_{g}	Total gate charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=480 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=42 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \text { to } 10 \mathrm{~V} \\ & \text { (see Figure 14. Test circuit for gate charge } \\ & \text { behavior) } \end{aligned}$	-	70	-	$n \mathrm{C}$
Q_{gs}	Gate-source charge		-	10.5	-	nC
$Q_{g d}$	Gate-drain charge		-	31	-	nC

1. $C_{\text {oss eq. }}$ is defined as a constant equivalent capacitance giving the same charging time as $C_{o s s}$ when $V_{D S}$ increases from 0 to $80 \% V_{D S S}$.

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-on delay time	$\mathrm{V}_{\mathrm{DD}}=300 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=21 \mathrm{~A}$,	-	18.5	-	ns
t_{r}	Rise time	$\mathrm{R}_{\mathrm{G}}=4.7 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	-	17	-	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{off})}$	Turn-off delay time	(see Figure 13. Test circuit for resistive load switching times and Figure 18. Switching time waveform)	-	119	-	ns
t_{f}	Fall time		-	13	-	ns

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
ISD	Source-drain current		-		42	A
$\mathrm{ISDM}^{(1)}$	Source-drain current (pulsed)		-		168	A
$\mathrm{V}_{\mathrm{SD}}{ }^{(2)}$	Forward on voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=21 \mathrm{~A}$	-		1.6	V
$\mathrm{trr}_{\text {r }}$	Reverse recovery time	$\mathrm{I}_{\mathrm{SD}}=42 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$ $V_{D D}=60 \mathrm{~V}$ (see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	487		ns
Q_{rr}	Reverse recovery charge		-	9.1		$\mu \mathrm{C}$
IRRM	Reverse recovery current		-	37.5		A
$\mathrm{trr}_{\text {r }}$	Reverse recovery time	$\begin{aligned} & \mathrm{I}_{\mathrm{SD}}=42 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{s} \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{DD}}=60 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$ (see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	605		ns
$\mathrm{Q}_{\text {rr }}$	Reverse recovery charge		-	12.5		$\mu \mathrm{C}$
IRRM	Reverse recovery current		-	41.5		A

1. Pulse width limited by safe operating area.
2. Pulsed: pulse duration $=300 \mu$ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

Figure 2. Thermal impedance

Figure 3. Output characteristics

Figure 4. Transfer characteristics

Figure 5. Gate charge vs gate-source voltage

Figure 6. Static drain-source on-resistance

Figure 7. Capacitance variations

Figure 8. Output capacitance stored energy

Figure 9. Normalized gate threshold voltage vs temperature

Figure 10. Normalized on-resistance vs temperature

Figure 11. Normalized $\mathbf{V}_{(B R) \text { DSs }}$ vs temperature

Figure 12. Source-drain diode forward characteristics

3 Test circuits

Figure 13. Test circuit for resistive load switching times

Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 14. Test circuit for gate charge behavior

Figure 16. Unclamped inductive load test circuit

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-247 long leads package information

Figure 19. TO-247 long leads package outline

Table 8. TO-247 long leads package mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.26
b2			3.25
b3	0.59		2.25
c	20.90		0.66
D	15.70	15.80	21.10
E	4.90	5.00	15.90
E2	2.40	2.50	5.10
E3	5.34	5.44	2.60
e	19.80	19.92	5.54
L			20.10
L1	3.50	3.60	4.30
P	5.60		3.70
Q	6.05	6.15	6.00
S			6.25

Revision history

Table 9. Document revision history

Date	Revision	Changes
01-Dec-2015	1	First release.
20-Jan-2017	2	Updated Table 2: "Absolute maximum ratings", Table 4: "Avalanche characteristics", Table 5: "On /off-states", Table 6: "Dynamic" and Table 7: "Switching times". Updated Section 2.2: "Electrical characteristics (curves)".
19-Mar-2020	3	Updated Table 6. Switching times. Minor text changes.

MPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2020 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B

