

STY112N65M5

N-channel 650 V, 0.019 Ω 96 A, MDmesh™ V Power MOSFET in Max247 package

Datasheet — production data

Features

Order code	V _{DSS} @T _{jMAX}	R _{DS(on)} max	I _D
STY112N65M5	710 V	< 0.022 Ω	96 A

- Higher V_{DSS} rating
- Higher dv/dt capability
- Excellent switching performance
- Easy to drive
- 100% avalanche tested

Applications

■ Switching applications

Description

This device is an N-channel MDmesh™ V Power MOSFET based on an innovative proprietary vertical process technology, which is combined with STMicroelectronics' well-known PowerMESH™ horizontal layout structure. The resulting product has extremely low onresistance, which is unmatched among siliconbased Power MOSFETs, making it especially suitable for applications which require superior power density and outstanding efficiency.

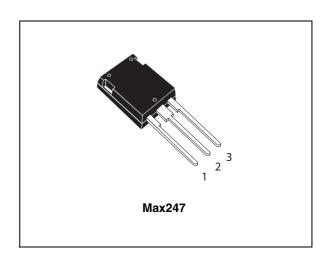


Figure 1. Internal schematic diagram

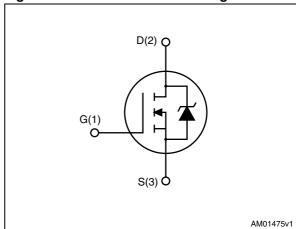


Table 1. Device summary

Order code	Marking	Package	Packaging
STY112N65M5	112N65M5	Max247	Tube

Contents STY112N65M5

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Revision history	11

STY112N65M5 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate- source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	96	Α
I _D	Drain current (continuous) at T _C = 100 °C	61	Α
I _{DM} ⁽¹⁾	Drain current (pulsed) 384		Α
P _{TOT}	Total dissipation at T _C = 25 °C	625	W
I _{AR}	Max current during repetitive or single pulse avalanche (pulse width limited by T_{JMAX})	17	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	2400	mJ
dv/dt ⁽²⁾	Peak diode recovery voltage slope 15		V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
T _j	Max. operating junction temperature	150	°C

^{1.} Pulse width limited by safe operating area.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.2	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	30	°C/W
T _I	Maximum lead temperature for soldering purpose	300	°C

^{2.} $I_{SD} \leq$ 96 A, di/dt = 400 A/µs, V_{DD} = 400 V, peak V_{DS} < $V_{(BR)DSS}$.

Electrical characteristics STY112N65M5

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	650			V
I _{DSS}		V _{DS} = 650 V V _{DS} = 650 V, T _C =125 °C			10 100	μA μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 25 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 48 A		0.019	0.022	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 100 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	-	16870 365 7	-	pF pF pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	$V_{GS} = 0$, $V_{DS} = 0$ to 520 V	-	1333	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$V_{GS} = 0$, $V_{DS} = 0$ to 520 V	-	350	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	1.26	-	Ω
Qg	Total gate charge	$V_{DD} = 520 \text{ V}, I_D = 48 \text{ A},$		350		nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	-	97	-	nC
Q_{gd}	Gate-drain charge	(see Figure 15)		118		nC

^{1.} $C_{o(tr)}$ is a constant capacitance value that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

^{2.} $C_{o(er)}$ is a constant capacitance value that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(v)}	Voltage delay time	$V_{DD} = 400 \text{ V}, I_D = 64 \text{ A},$		267		ns
t _{r(v)}	Voltage rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$		79		ns
t _{f(i)}	Current fall time	(see Figure 16)	-	53	_	ns
t _{c(off)}	Crossing time	(see Figure 19)		140		ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		96 384	A A
	Source-drain current (pulsed)					
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 96 \text{ A}, V_{GS} = 0$	•		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 96 A, di/dt = 100 A/μs		570		ns
Q_{rr}	Reverse recovery charge	$V_{DD} = 100 \text{ V (see } Figure 16)$	-	17		μC
I _{RRM}	Reverse recovery current	VDD = 100 V (see rigule 10)		60		Α
t _{rr}	Reverse recovery time	$I_{SD} = 96 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		695		ns
Q_{rr}	Reverse recovery charge	$V_{DD} = 100 \text{ V}, T_j = 150 ^{\circ}\text{C}$	-	26		μC
I _{RRM}	Reverse recovery current	(see Figure 16)		73		Α

^{1.} Pulse width limited by safe operating area

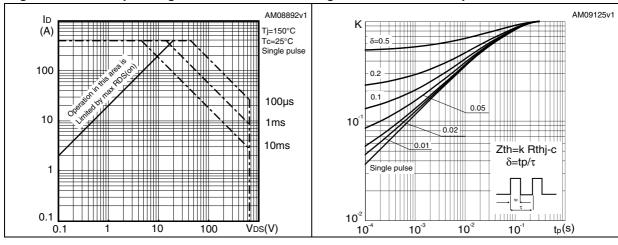
^{2.} Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%

Electrical characteristics STY112N65M5

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance



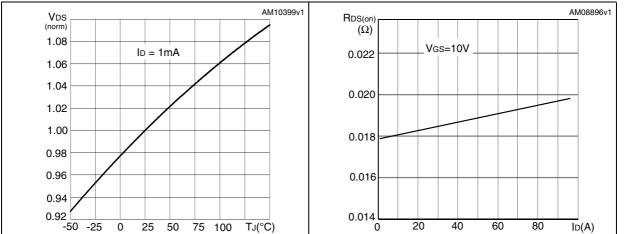

Figure 4. Output characteristics

Figure 5. Transfer characteristics

Figure 6. Normalized V_{DS} vs temperature

Figure 7. Static drain-source on resistance

AM08897v1 AM08898v1 Vgs С V_{DS}(V) (pF) (V) VDS VDD=520V 12 500 100000 ID=48A Ciss 10 400 10000 8 300 1000 Coss 6 200 100 100 10 Crss Qg(nC) 100 200 300 400 0.1 100 VDS(V) 1 10

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

Figure 10. Normalized gate threshold voltage Figure 11. Normalized on resistance vs vs temperature temperature

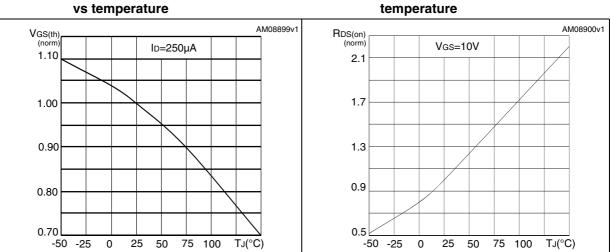
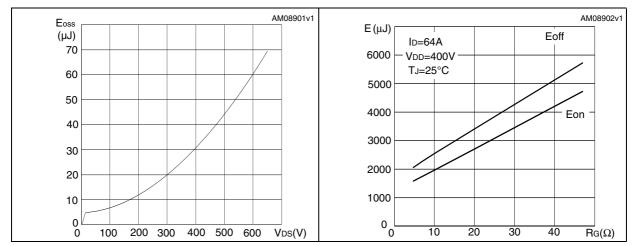



Figure 12. Output capacitance stored energy Figure 13. Switching losses vs gate resistance

1. Eon including reverse recovery of a SiC diode

Test circuits STY112N65M5

3 Test circuits

Figure 14. Switching times test circuit for resistive load

Figure 15. Gate charge test circuit

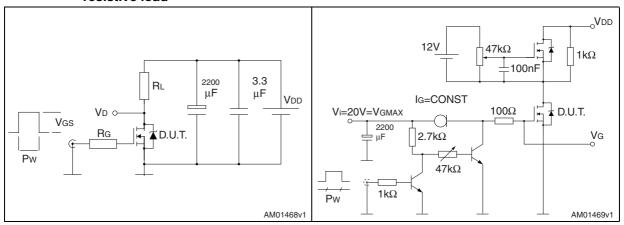


Figure 16. Test circuit for inductive load switching and diode recovery times

Figure 17. Unclamped inductive load test circuit

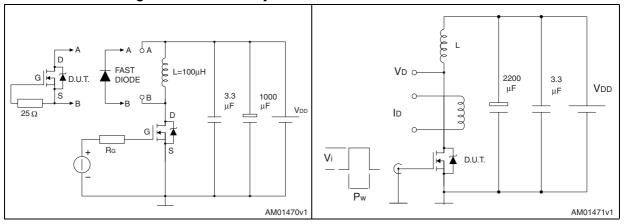
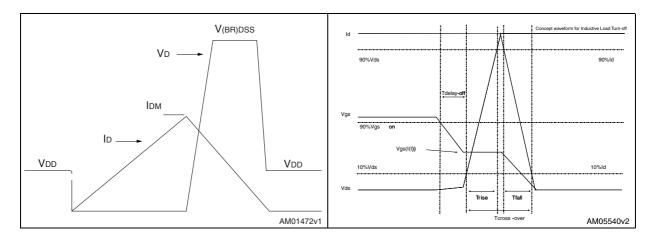



Figure 18. Unclamped inductive waveform

Figure 19. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Table 8. Max247 mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
Α	4.70		5.30
A1	2.20		2.60
b	1.00		1.40
b1	2.00		2.40
b2	3.00		3.40
С	0.40		0.80
D	19.70		20.30
е	5.35		5.55
E	15.30		15.90
L	14.20		15.20
L1	3.70		4.30

HEAT-SINK PLANE Gate D <u>A1</u> *b1* b2 BACK VIEW

Figure 20. Max247 drawing

0094330_Rev_D

STY112N65M5 Revision history

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
20-Jan-2009	1	First release.
20-May-2011	2	Document status pomoted from preliminary data to datasheet.
03-May-2012	3	Section 4: Package mechanical data has been updated.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

12/

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 15321 Rev 3

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7