

T610H

High temperature 6 A sensitive TRIACs

Features

- Medium current TRIAC
- Logic level sensitive TRIAC
- 150 °C max. T_i turn-off commutation
- Clip bounding
- RoHS (2002/95/EC) compliant package

Applications

- The T610H is designed for the control of AC actuators in appliances and industrial systems.
- The multi-port drive of the microcontroller can control the multiple loads of such appliances and systems through this sensitive gate TRIAC.

Description

Specifically designed to operate at 150 °C, the new 6 A T610H TRIAC provides an enhanced performance in terms of power loss and thermal dissipation. This allows the optimization of the heatsink size, leading to space and cost effectiveness when compared to electromechanical solutions.

Based on ST logic level technology, the T610H offers an I_{GT} lower than 10 mA and specified minimal commutation and high noise immunity levels valid up to the T_i max.

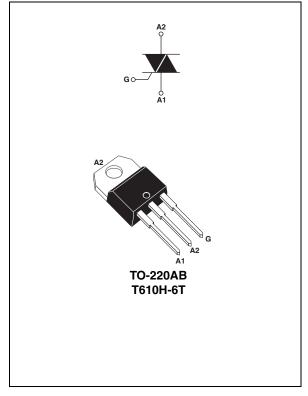


Table 1. Device summary

Symbol	Value	Unit
I _{T(RMS)}	6	А
V _{DRM} /V _{RRM}	600	V
I _{GT MAX}	10	mA

1 Characteristics

Symbol	Param	Value	Unit			
I _{T(RMS)}	On-state rms current (full sine wave) $T_c = 138 \text{ °C}$		6	А		
Ι.	Non repetitive surge peak on-state	F = 60 Hz	t = 16.7 ms	63	А	
ITSM	current (full cycle, T _j initial = 25 °C)	F = 50 Hz	t = 20 ms	60	A	
ľt	I ² t Value for fusing	t _p = 10 ms		24	A ² s	
dl/dt	Critical rate of rise of on-state current $I_G = 2 \ x \ I_{GT}$, $t_r \leq 100 \ ns$	F = 120 Hz	T _j = 150 °C	50	A/µs	
V _{DSM} /V _{RSM}	Non repetitive surge peak off-state voltage	t _p = 10 ms	T _j = 25 °C	V _{DRM} /V _{RRM} + 100	V	
I _{GM}	Peak gate current	t _p = 20 μs	T _j = 150 °C	4	А	
P _{G(AV)}	Average gate power dissipation $T_j = 150 \ ^{\circ}C$			1	W	
T _{stg} T _j	Storage junction temperature range Operating junction temperature range			- 40 to + 150 - 40 to + 150	°C	

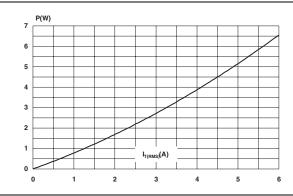
Table 2. Absolute maximum ratings

Table 3.Electrical characteristics (T_i = 25 °C, unless otherwise specified)

Symbol	Test conditions	Quadrant	Min.	Max.	Unit
I _{GT}		- -	1	10	mA
V _{GT}	$V_D = 12 V R_L = 33 \Omega$	- -		1.0	V
V_{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega$	- -	0.15		V
I _H ⁽¹⁾	I _T = 100 mA			25	mA
I		1 - 111		30	mA
ΙL	$I_{G} = 1.2 I_{GT}$	11		35	
dV/dt ⁽¹⁾	$dV/dt^{(1)}$ V _D = 67% V _{DRM} , gate open, T _j = 150 °C				V/µs
(dl/dt)c ⁽¹⁾	Logic level, 0.1 V/µs, $T_j = 150 \text{ °C}$		8.7		A/ms
	Logic level, 15 V/µs, T _j = 150 °C		2.3		AVIIIS

1. For both polarities of A2 referenced to A1.

			1		-
Symbol	Test cond	Value	Unit		
$V_{T}^{(1)}$	$I_{TM} = 8.5 \text{ A}, t_p = 380 \ \mu \text{s}$	T _j = 25 °C	MAX.	1.5	V
V _{t0} ⁽¹⁾	Threshold voltage	T _j = 150 °C	MAX.	0.8	V
R _d ⁽¹⁾	Dynamic resistance	T _j = 150 °C	MAX.	62	mΩ
		T _j = 25 °C	MAX.	5	μA
I _{DRM}	$V_{DRM} = V_{RRM}$	T _j = 150 °C	MAX.	2.7	
I _{RRM}	$V_D/V_R = 400 V$ (at peak mains voltage)	T _j = 150 °C	MAX.	2.2	mA
	$V_D/V_R = 200 V$ (at peak mains voltage)	T _j = 150 °C	MAX.	1.8	


Table 4.Static characteristics

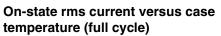

1. for both polarities of A2 referenced to A1.

Table 5.Thermal resistance

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to case (AC)	1.8	°C/W
R _{th(j-a)}	Junction to ambient	60	C/W

Figure 1. Maximum power dissipation versus Figure 2. on-state rms current (full cycle)

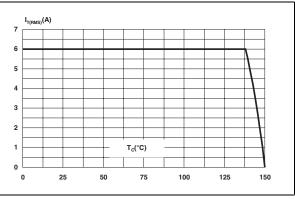


Figure 3. On-state rms current versus ambient temperature (free air convection, full cycle)

T_a(°C)

75

50

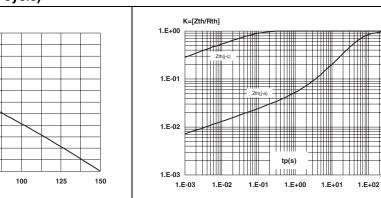


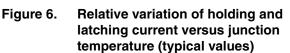
Figure 4.

Relative variation of thermal impedance, versus pulse duration

IT(RMS)(A)

3.0 2.5

2.0 1.5 1.0


0.5

0.0

0

25

1.E+03

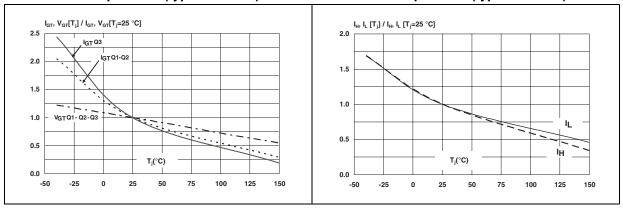
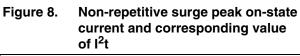
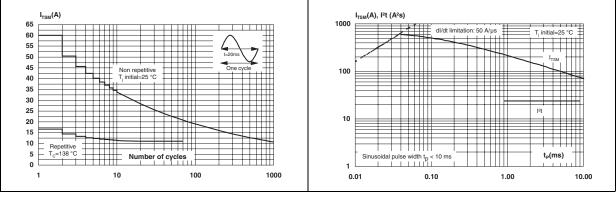
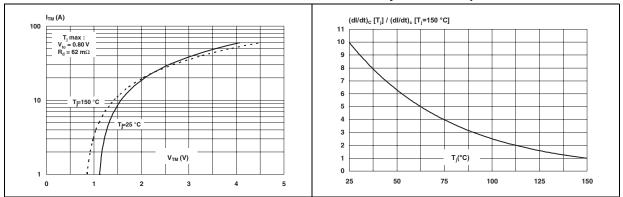
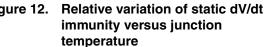
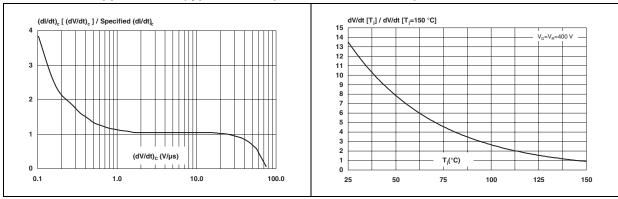
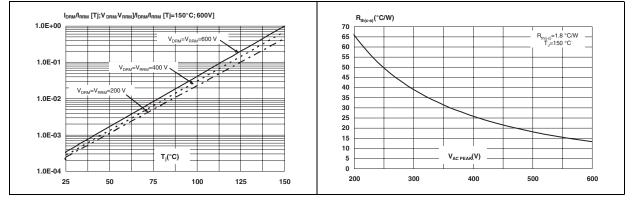



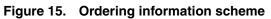
Figure 7. Surge peak on-state current versus number of cycles

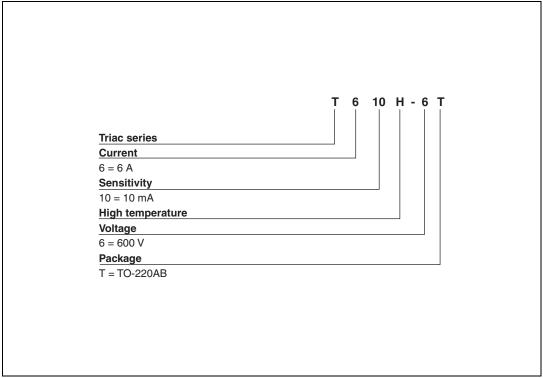




Figure 9. On-state characteristics (maximum values)


Figure 10. Relative variation of critical rate of decrease of main current versus junction temperature


Relative variation of critical rate of Figure 12. Figure 11. decrease of main current versus reapplied dV/dt (typical values)


Figure 13. Variation of leakage current versus Figure 14. Acceptable case to ambient thermal junction temperature for different values of blocking voltage


resistance versus repetitive peak off-state voltage

2 Ordering information scheme

3 Package information

- Epoxy meets UL94, V0
- Recommended torque 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

Table 6. TO-220AB dimensions

					Dimer	nsions		
		Ref.	Mi	illimete	rs		Inches	
			Min.	Тур.	Max.	Min.	Тур.	Max.
		А	15.20		15.90	0.598		0.625
	-	a1		3.75			0.147	
B ,, , , , , , , , , , , , , , , , , ,	C	a2	13.00		14.00	0.511		0.551
	<u>+</u>	В	10.00		10.40	0.393		0.409
	- F	b1	0.61		0.88	0.024		0.034
		b2	1.23		1.32	0.048		0.051
14 13 ···.		С	4.40		4.60	0.173		0.181
	€2	c1	0.49		0.70	0.019		0.027
		c2	2.40		2.72	0.094		0.107
		е	2.40		2.70	0.094		0.106
	M ➡ c1	F	6.20		6.60	0.244		0.259
lee l	-+H4	ØI	3.75		3.85	0.147		0.151
	-	14	15.80	16.40	16.80	0.622	0.646	0.661
	-	L	2.65		2.95	0.104		0.116
	Ī	12	1.14		1.70	0.044		0.066
		13	1.14		1.70	0.044		0.066
		М		2.60			0.102	

4 Ordering information

Table 7.Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
T610H-6T	T610H 6T	TO-220AB	2.3 g	50	Tube

5 Revision history

Table 8.Document revision history

Date	Revision	Changes
15-May-2009	1	First issue.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 15713 Rev 1

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

 CTA08-1000CW
 CTB24-800BW
 CTA08-1000C
 CTA12-800BWPT
 CTA16-1000B
 CTB24-800B
 BT137-600-0Q
 5615
 OT415Q
 2N6075A

 NTE5629
 NTE5688
 CTB08-400CW
 D31410
 T2535T-8I
 BTA204-600D,127
 BTA425Z-800BTQ
 KS100N12
 TOPT16-800C0,127

 OT408,135
 BT134-800E
 BT136D
 BTB16Q-600BW
 Z0409MF
 BTA06-600BRG
 BTA06-800BWRG
 BTA08-600BRG
 BTA08-600BRG
 BTA08-800B

 BT136-600,127
 MAC97A6,116
 BT137-600E,127
 BTB16-600CW3G
 BTB16-600CW3G
 Z0109MN,135
 T825T-6I
 T1220T-6I
 NTE5638

 ACST1235-8FP
 BT136X-600E,127
 MAC4DLM-1G
 BT134-600D,127
 BTA08-600BW3G
 NTE56008
 NTE56017
 NTE56018
 NTE56059

 NTE5608
 NTE5609
 NTE56020
 NTE56020
 NTE56020
 NTE56020
 NTE56020