

Snubberless™, logic level and standard 8 A Triacs

Datasheet - production data

Table 1. Device summary

Part number	Symbol	Value		
T810T-6I	I _{GT} 3Q logic level	10 mA		
T820T-6I T835T-6I	I _{GT} 3Q Snubberless	20 / 35 mA		
T825T-6I	I _{GT} 4Q standard	25 mA		

Features

- Medium current Triac
- High static and dynamic commutation
- · Low thermal resistance with clip bonding
- Packages is RoHS (2002/95/EC) compliant
- 600 V V_{RM}
- UL certified (ref. file E81734)

Applications

- · Value sensitive application
- General purpose ac line load switching
- Motor control circuits in power tools
- Small home appliances, lighting
- Inrush current limiting circuits
- Overvoltage crowbar protection

Description

Available in through-hole, the T8T series of Triacs can be used as on/off or phase angle control function in general purpose ac switching where high commutation capability is required.

This series can be designed in many value sensitive appliances thanks to the parameters guidance provided in the following pages.

Provides insulation rated at 2500 V rms (TO-220AB insulated package).

TM: Snubberless is a trademark of STMicroelectronics

Characteristics T8T

1 Characteristics

Table 2. Absolute ratings (limiting values; $T_j = 25$ °C, unless otherwise specified)

Symbol	Parameter			Value	Unit
I _{T(RMS)}	On-state rms current (full sine wave) $T_c = 97 ^{\circ}\text{C}$		8	Α	
1 .	Non repetitive surge peak on-state current	F = 50 Hz	t _p = 20 ms	60	Α
I _{TSM}	(full cycle, T _j initial = 25 °C)	F = 60 Hz	$t_p = 16.7 \text{ ms}$	63	А
l ² t	I ² t Value for fusing		t _p = 10 ms	26	A ² s
dI/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$ $I_{r} \le 100 \text{ ns}$ $F = 60 \text{ Hz}$		T _j = 125 °C	50	A/µs
V _{DSM} , V _{RSM}	Non repetitive surge peak off-state voltage $t_p = 10 \text{ ms}$		T _j = 25 °C	V _{DRM} , V _{RRM} + 100	V
I _{GM}	Peak gate current $t_p = 20 \mu s$ $T_j = 125$		T _j = 125 °C	4	Α
P _{G(AV)}	Average gate power dissipation $T_j = 125$ °C			1	W
T _{stg}	Storage junction temperature range			- 40 to + 150	°C
Tj	Operating junction temperature range			- 40 to + 125	°C

T8T Characteristics

Table 3. Electrical characteristics ($T_j = 25$ °C, unless otherwise specified)

Counch al	Test conditions	Overdenut		T8xxT			l lmi4	
Symbol		Quadrant		T810T	T820T	T825T	T835T	Unit
I _{GT} ⁽¹⁾	$V_D = 12 \text{ V}, R_L = 30 \Omega$	I - II - III	MAX.	10	20	25	35	mA
GT`		IV				40		
V _{GT}	$V_D = V_{DRM}, R_L = 30 \Omega,$ $T_j = 25 \text{ °C}$	ALL	MAX.	1.3		V		
V _{GD}	$V_D = V_{DRM}$, $R_L = 3.3 \text{ k}\Omega$, $T_j = 125 \text{ °C}$	ALL	MIN.	0.2		V		
I _H ⁽²⁾	I _T = 500 mA MAX. 15 25		30	40	mA			
	I _G = 1.2 I _{GT}	I - III		20	35	40	50	mA
ΙL		IV	MAX.			40		
		II		25	40	70	70	
d\//dt (2)	dV/dt ⁽²⁾ V _D = 67% V _{DRM,} gate open	T _j = 125 °C	MIN.	100	750	500	2000	\//uo
u v/ui · /		$T_j = 150 {}^{\circ}C^{(3)}$	IVIIIN.	50	500	300	1000	V/µs
	(dV/dt)c = 0.1 V/μs			5.4				
	$(dV/dt)c = 10 V/\mu s$	T _j = 125 °C		2		4.5		
(dl/dt)c (2)	Without snubber		NAIN!		3.4		8	A/mc
	(dV/dt)c = 0.1 V/μs	$T_j = 150 ^{\circ}C^{(3)}$	MIN.	2.5				A/ms
	(dV/dt)c = 10 V/μs			1		2		
	Without snubber				2		6.5	

- 1. Minimum $I_{\mbox{\footnotesize GT}}$ is guaranteed at 5% of $I_{\mbox{\footnotesize GT}}$ max.
- 2. For both polarities of A2 referenced to A1.
- 3. Derating information for excess temperature above $T_j \, \text{max}$.

Table 4. Static characteristics

Symbol	Test conditions				Unit
V _T ⁽¹⁾	$I_{TM} = 11.3 \text{ A}, t_p = 380 \mu \text{s}$	T _j = 25 °C	MAX.	1.60	V
V _{TO} (1)	Threshold voltage	T _j = 125 °C	MAX.	0.87	V
R _D ⁽¹⁾	Dynamic resistance	T _j = 125 °C	MAX.	60	mΩ
	$V_{DRM} = V_{RRM}$	T _j = 25 °C	MAX.	5	μA
I _{DRM} ,		T _j = 125 °C	IVIAA.	1	A
IRRM	$V_D = 0.9 \times V_{DRM}$	$T_j = 150 ^{\circ}C^{(2)}$	TYP.	1.9	mA

- 1. For both polarities of A2 referenced to A1.
- 2. Derating information for excess temperature above $T_j\,\text{max}.$

Characteristics T8T

Table 5. Thermal resistance

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to case (AC)	2.8	°C/W
R _{th(j-a)}	Junction to ambient (DC)	60	°C/W

Figure 1. Maximum power dissipation versus rms on-state current

P(W)

9
α = 180°
8
7
6
5
4
3
2
1
0
0
1 2 3 4 5 6 7 8

Figure 2. On-state rms current versus case temperature

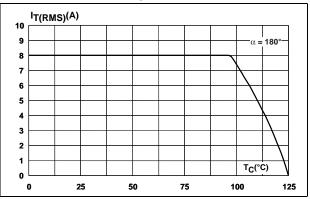


Figure 3. On-state rms current versus ambient temperature (free air convection)

1.5
1.0
0.5
0.0
0 25 50 75 100 125

Figure 4. Relative variation of thermal impedance versus pulse duration

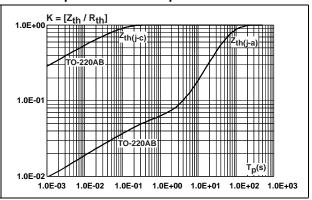


Figure 5. On-state characteristics (maximum values)

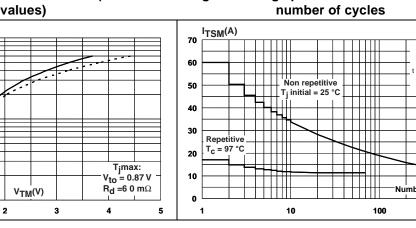
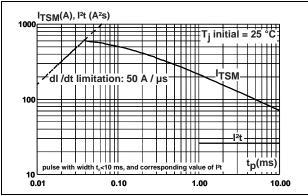


Figure 6. Surge peak on state current versus

I_{TM}(A)

100

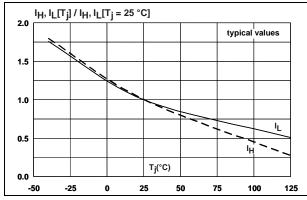
10


1 0

1

T8T Characteristics

Figure 7. Non repetitive surge peak on-state current for a sinusoidal


Figure 8. Relative variation of gate trigger current and gate trigger voltage versus junction temperature

 I_{GT} , $V_{GT}[T_i] / I_{GT}$, $V_{GT}[T_i = 25 °C]$ 3.0 typical values 2.5 I_{GT} Q I_{GT} Q1-Q2 2.0 1.5 I_{GT} Q1-Q2-Q3 1.0 0.5 T_j(°C) 0.0 -25 25 -50 125

Figure 9. Relative variation of holding current and latching current versus junction temperature

Figure 10. Relative variation of static dV/dt immunity versus junction temperature

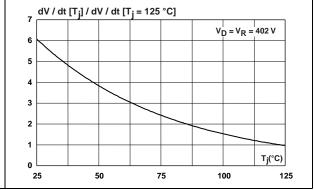
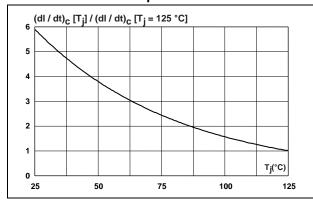
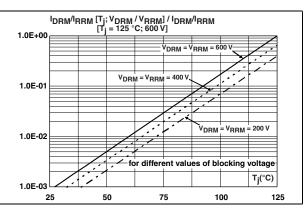
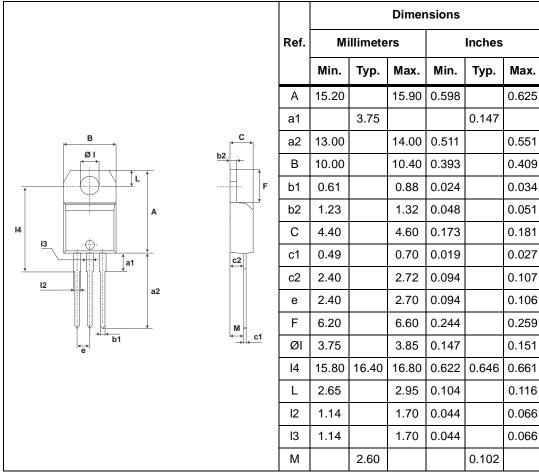




Figure 11. Relative variation of critical rate of decrease of main current versus junction temperature

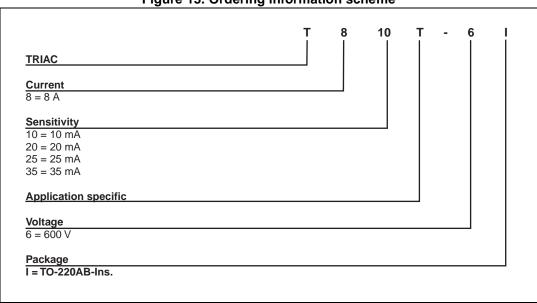
Figure 12. Relative variation of leakage current versus junction temperature


Package information T8T

2 Package information

- Epoxy meets UL94, V0
- Lead-free packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.


Table 6. TO-220AB Insulated dimensions

3 Ordering information

Figure 13. Ordering information scheme

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
T810T-6I	T810T-6I				
T820T-6I	T820T-6I	TO-220AB-Ins.	2.3 g	50	Tube
T825T-6I	T825T-6I	10-220AB-IIIS.	2.3 g	30	Tube
T835T-6I	T835T-6I				

4 Revision history

Table 8. Document revision history

Date	Revision	Changes
10-Sep-2009	1	First issue.
18-Jan-2010	2	Updated pag.1.
20-Sep-2011	3	Updated: Features. Replaced order codes with part numbers in Table 1.
16-Sep-2013	4	Replaced order codes with part numbers in Table 1.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

CTA08-1000CW CTB24-800BW CTA08-1000C CTA12-800BWPT CTA16-1000B CTB24-800B BT137-600-0Q 5615 OT415Q 2N6075A

NTE5629 NTE5688 CTB08-400CW D31410 BTA425Z-800BTQ KS100N12 TOPT16-800C0,127 OT408,135 BT134-800E BT136D

BTB16Q-600BW Z0409MF BTA04-600B BTA06-600BRG BTA06-800BWRG BTA08-600BRG BTA08-800B BT136-600,127

MAC97A6,116 BT137-600E,127 BTB16-600CW3G BTB16-600CW3G Z0109MN,135 T825T-6I T1220T-6I NTE5638 ACST1235-8FP

BT136X-600E,127 MAC4DLM-1G BT134-600D,127 BTA08-600BW3G NTE56008 NTE56017 NTE56018 NTE56059 NTE5608

NTE5609 NTE5656 NTE56020 NTE56022