High temperature 8 A Snubberless ${ }^{\text {TM }}$ Triacs

Datasheet - production data

Features

- Medium current Triac
- $\quad 150^{\circ} \mathrm{C}$ max. T_{j} turn-off commutation
- Low thermal resistance with clip bonding
- Very high 3 quadrant commutation capability
- Packages are RoHS (2002/95/EC) compliant
- UL certified (ref. file E81734)

Applications

Especially designed to operate in high power density or universal motor applications such as vacuum cleaner and washing machine drum motor, these 8 A Triacs provide a very high switching capability up to $150^{\circ} \mathrm{C}$ junction temperatures.

The heatsink can be reduced, compared to traditional Triac, according to the high performance at given junction temperatures.

Description

Available in through-hole or surface mount packages, these Triacs series are suitable for general purpose mains power ac switching.

By using an internal ceramic pad, they provide voltage insulation (rated at $2500 \mathrm{~V}_{\mathrm{RMS}}$).

Table 1: Device summary

Symbol	Value	Unit
$\mathrm{I}_{\text {(RMS })}$	8	A
$\mathrm{~V}_{\text {DRM }} / \mathrm{V}_{\text {RRM }}$	600	V
I_{GT}	35 or 50	mA

1
 Characteristics

Table 2: Absolute ratings (limiting values)

Symbol	Parameter			Value	Unit
$\mathrm{It}_{\text {(RMS })}$	RMS on-state current (full sine wave)	D2PAK, TO-220AB	$\mathrm{TC}=133{ }^{\circ} \mathrm{C}$	8	A
		TO-220A Ins.	$\mathrm{T} \mathrm{C}=116^{\circ} \mathrm{C}$		
Itsm	Non repetitive surge peak on-state current (full cycle, T_{j} initial $=25^{\circ} \mathrm{C}$)	$\mathrm{f}=50 \mathrm{~Hz}$	$\mathrm{tp}_{\mathrm{p}}=20 \mathrm{~ms}$	80	A
		$\mathrm{f}=60 \mathrm{~Hz}$	$\mathrm{t}_{\mathrm{p}}=16.7 \mathrm{~ms}$	84	
12 t	${ }^{12} \mathrm{t}$ value for fusing		$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$	42	$\mathrm{A}^{2} \mathrm{~s}$
dl/dt	Critical rate of rise of on-state current $\mathrm{I}_{\mathrm{G}}=2 \mathrm{x} \mathrm{I}_{\mathrm{GT}}, \mathrm{tr}_{\mathrm{r}} \leq 100 \mathrm{~ns}$	$\mathrm{f}=50 \mathrm{~Hz}$	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	50	A/ $/ \mathrm{s}$
VDSM / VRSM	Non repetitive surge peak off-state voltage	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{V}_{\mathrm{DRM}} / \mathrm{V}_{\mathrm{RRM}} \\ +100 \end{gathered}$	V
I_{Gm}	Peak forward gate current	$\mathrm{t}_{\mathrm{p}}=20 \mu \mathrm{~s}$	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	4	A
$\mathrm{PG}_{\mathrm{G}(\mathrm{AV})}$	Average gate power dissipation		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	1	W
$\mathrm{T}_{\text {stg }}$	Storage junction temperature range			-40 to +150	${ }^{\circ} \mathrm{C}$
T_{j}	Operating junction temperature range			-40 to +150	${ }^{\circ} \mathrm{C}$

Table 3: Electrical characteristics ($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Test Conditions	Quadrant		Value		Unit
				T835H	T850H	
$\mathrm{IGT}^{(1)}$	$V_{D}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=33 \Omega$	I- II - III	Max.	35	50	mA
$V_{G T}$				1.0		mA
$V_{G D}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DRM}}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega$	I- II- III	Min.	0.15		V
$\mathrm{IH}^{(2)}$	$\mathrm{I}_{\mathrm{T}}=500 \mathrm{~mA}$		Max.	35	75	mA
IL	$\mathrm{I}_{\mathrm{G}}=1.2 \times \mathrm{IGT}$	I - III	Max.	50	60	mA
		11		80	110	
$\mathrm{dV} / \mathrm{dt}^{(2)}$	$V_{D}=2 / 3 \times V_{\text {DRM }}$, gate open	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	Min.	1000	1500	$\mathrm{V} / \mathrm{\mu s}$
(dl/dt) $\mathrm{c}^{(2)}$	Without snubber	$\mathrm{T}_{\mathrm{j}}=15{ }^{\circ} \mathrm{C}$	Min.	11	14	A/ms

Notes:

${ }^{(1)}$ minimum IGT is guaranted at 20% of IGT max.
${ }^{(2)}$ for both polarities of A2 referenced to A1.

Table 4: Static characteristics

Symbol	Test conditions			Value	Unit
$\mathrm{V}_{\mathrm{T}^{(1)}}$	$\mathrm{I}_{\text {TM }}=11 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=380 \mu \mathrm{~s}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	Max.	1.5	V
$\mathrm{V}_{\text {to }}{ }^{(1)}$	Threshold voltage	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	Max.	0.80	V
$\mathrm{R}_{\mathrm{d}}{ }^{(1)}$	Dynamic resistance	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	Max.	52	$\mathrm{m} \Omega$
Idrm / IRRM	$V_{\text {DRM }}=\mathrm{V}_{\text {RRM }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	Max.	5	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	Max.	3.1	mA
	$\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{R}}=400 \mathrm{~V}$ (at peak mains voltage)	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	Max.	2.5	
	$\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{R}}=200 \mathrm{~V}$ (at peak mains voltage)	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	Max.	2.0	

Notes:

${ }^{(1)}$ for both polarities of A2 referenced to A1

Table 5: Thermal parameters

Symbol	Parameter		Value	Unit
$\mathrm{R}_{\text {th(j-c) }}$	Junction to case (AC)	D²PAK, TO-220AB	1.85	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		TO-220AB Ins.	3.7	
$\mathrm{R}_{\text {th(}}$-a)	Junction to ambient ($\mathrm{S}_{\mathrm{cu}}=1 \mathrm{~cm}^{2}$, D2PAK)	D2PAK	45	
	Junction to ambient	TO-220AB, TO-220AB Ins.	60	

1.1 Characteristics (curves)

Figure 1: Maximum power dissipation versus onstate RMS current (full cycle)

Figure 2: On-state RMS current versus case temperature (full cycle)

Figure 4: Variation of thermal impedance versus pulse duration

Figure 6: Surge peak on-state current versus number of cycles

Figure 7: Non-repetitive surge peak on-state current for a sinusoidal pulse

Figure 8: Relative variation of $\mathrm{I}_{\mathrm{GT}}, \mathrm{I}_{\mathrm{H}}, \mathrm{I}_{\mathrm{L}}$ vs junction temperature (typical values)

Figure 9: Relative variation of critical rate of decrease of main current (dl/dt)c versus reapplied (dV/dt)c

Figure 10: Relative variation of critical rate of decrease of main current versus junction temperature

Figure 11: Leakage current versus junction temperature for different values of blocking voltage (typical values)

Figure 12: Variation of thermal resistance junction to ambient versus copper surface under tab

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

- Epoxy meets UL94, V0
- Lead-free package leads
- Cooling method: by conduction (C)

$2.1 \quad D^{2}$ PAK package information

Figure 13: D²PAK package outline

Table 6: D2PAK package mechanical data

Ref.	Dimensions					
	Millimeters			Inches ${ }^{(1)}$		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	4.30		4.60	0.1693		0.1811
A1	2.49		2.69	0.0980		0.1059
A2	0.03		0.23	0.0012		0.0091
A3		0.25			0.0098	
b	0.70		0.93	0.0276		0.0366
b2	1.25		1.7	0.0492		0.0669
c	0.45		0.60	0.0177		0.0236
c2	1.21		1.36	0.0476		0.0535
D	8.95		9.35	0.3524		0.3681
D1	7.50		8.00	0.2953		0.3150
D2	1.30		1.70	0.0512		0.0669
e	2.54			0.1		
E	10.00		10.28	0.3937		0.4047
E1	8.30		8.70	0.3268		0.3425
E2	6.85		7.25	0.2697		0.2854
G	4.88		5.28	0.1921		0.2079
H	15		15.85	0.5906		0.6240
L	1.78		2.28	0.0701		0.0898
L2	1.27		1.40	0.0500		0.0551
L3	1.40		1.75	0.0551		0.0689
R		0.40			0.0157	
V2	0°		8°	0°		8°

Notes:

${ }^{(1)}$ Dimensions in inches are given for reference only

Figure 14: D2PAK recommended footprint (dimensions are in mm)

2.2 TO-220AB Insulated package information

Figure 15: TO-220AB Insulated package outline

(1)Resin gate position accepted in one of the two positions or in the symmetrical opposites.

Table 7: TO-220AB Insulated package mechanical data

Ref.	Millimeters					Max.
	Typ.			Max.	Min.	Typ.
	Min.	Max.				
A	15.20		15.90	0.5984		0.6260
a1		3.75			0.1476	
a2	13.00		14.00	0.5118		0.5512
B	10.00		10.40	0.3937		0.4094
b1	0.61		0.88	0.0240		0.0346
b2	1.23		1.32	0.0484		0.0520
C	4.40		4.60	0.1732		0.1811
c1	0.49		0.70	0.0193		0.0276
c2	2.40		2.72	0.0945		0.1071
e	2.40		2.70	0.0945		0.1063
F	6.20		6.60	0.2441		0.2598
I	3.73		3.88	0.1469		0.1528
L	2.65		2.95	0.1043		0.1161
I2	1.14		1.70	0.0449		0.0669
I3	1.14		1.70	0.0449		0.0669
I4	15.80	16.40	16.80	0.6220	0.6457	0.6614
M		2.6			0.1024	

Notes:

${ }^{(1)}$ Inch dimensions are for reference only.

3 Ordering information

Figure 16: Ordering information scheme

Triac series
Current
$8=8 \mathrm{~A}$
Sensitivity
$35=35 \mathrm{~mA}$
$50=50 \mathrm{~mA}$
High temperature
Voltage
$6=600 \mathrm{~V}$
Package
$\mathrm{G}=\mathrm{D}^{2} \mathrm{PAK}$
$\mathrm{T}=\mathrm{TO}-220 \mathrm{AB}$
I = TO-220AB Ins
Packing
Blank = Tube (D²PAK, TO-220AB)
-TR = Tape and reel (D2PAK)

Table 8: Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
T8xxH-6G	T8xxH 6G	D2 PAK	1.5 g	50	Tube
T8xxH-6G-TR	T8xxH 6G	D2 PAK	1.5 g	1000	Tape and reel
T8xxH-6T	T8xxH 6T	TO-220AB	2.3 g	50	Tube
T8xxH-6I	T8xxH 6I	TO-220AB Ins.	2.3 g	50	Tube

4 Revision history

Table 9: Document revision history

Date	Revision	Changes
17-Apr-2007	1	First issue.
19-Sep-2011	2	Updated: Features, Description, Figure 2, Table 2 and 4.
30-Mar-2017	3	Minor text changes. Updated Table 4: "Static characteristics" and Figure 7: "Non-repetitive surge peak on-state current for a sinusoidal pulse".
07-Feb-2018	4	Updated Table 2: "Absolute ratings (limiting values)", Figure 2: "On-state RMS current versus case temperature (full cycle)" and Figure 6: "Surge peak on-state current versus number of cycles".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Triacs category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
CTA08-1000CW CTB24-800BW CTA08-1000C CTA12-800BWPT CTA16-1000B CTB24-800B BT137-600-0Q 5615 OT415Q 2N6075A $\underline{\text { NTE5629 NTE5688 CTB08-400CW D31410 T2535T-8I BTA425Z-800BTQ KS100N12 TOPT16-800C0,127 OT408,135 BT134-800E }}$ BT136D BTB16Q-600BW Z0409MF BTA04-600B BTA06-600BRG BTA06-800BWRG BTA08-600BRG BTA08-800B BT136-600,127 MAC97A6,116 BT137-600E,127 BTB16-600CW3G BTB16-600CW3G Z0109MN,135 T825T-6I T1220T-6I NTE5638 ACST1235-8FP BT136X-600E,127 MAC4DLM-1G BT134-600D,127 BTA08-600BW3G NTE56008 NTE56017 NTE56018 NTE56059 NTE5608 NTE5609 NTE5656 NTE56020

