lif

45 W + 45 W dual BTL class-D audio amplifier

PowerSSO36 with exposed pad down

Product status	
TDA7492PE	
Product summary	
Order code	TDA7492PETR
Temperature range	-40 to $+85^{\circ} \mathrm{C}$
Package	PowerSSO-36 EPD
Packing	Tape and reel

Features

- Wide-range single-supply operation
(7-26 V)
- Possible output configurations:
- $\quad 2 \times$ PBTL
- $1 \times$ Parallel BTL
- BTL output capabilities $\left(\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}\right)$:
- $\quad 44 \mathrm{~W}+44 \mathrm{~W}, 4 \Omega$, THD 1%
- $\quad 57 \mathrm{~W}+57 \mathrm{~W}, 4 \Omega$, THD 10\%
- $\quad 32 W+32 W, 6 \Omega$, THD 1%
- $\quad 41 \mathrm{~W}+41 \mathrm{~W}, 6 \Omega$, THD 10%
- $\quad 25 \mathrm{~W}+25 \mathrm{~W}, 8 \Omega$, THD 1%
- $\quad 32 \mathrm{~W}+32 \mathrm{~W}, 8 \Omega$, THD 10%
- Parallel BTL output capabilities $\left(\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}\right)$:
- $\quad 70 \mathrm{~W}, 3 \Omega$, THD 1\%
- $\quad 90 \mathrm{~W}, 3 \Omega$, THD 10%
- High efficiency
- Four selectable, fixed-gain settings of nominally $20.8 \mathrm{~dB}, 26.8 \mathrm{~dB}, 30 \mathrm{~dB}$ and 32.8 dB
- Differential inputs minimize common-mode noise
- Standby, mute and play operating modes
- Short-circuit protection
- Output power limited by PLIMIT function
- Detection of shorted output pins during startup
- Thermal overload protection
- ECOPACK ${ }^{\circledR}$ environmentally friendly package

Description

The TDA7492PE is a dual BTL class-D audio amplifier with single power supply designed for home audio applications.
The device is housed in a 36 -pin PowerSSO package with exposed pad down (EPD) to facilitate power dissipation through a properly designed PCB area underneath the TDA7492PE.

Figure 2. Internal block diagram (showing one channel only) shows the block diagram of one of the two identical channels of the TDA7492PE.

Figure 1. Internal block diagram (showing one channel only)

2

Pin description

2.1 Pinout

Figure 2. Pin connections (top view)

2.2 Pin list

Table 1. Pin description list

Number	Name	Type	Description
1	SUB_GND	PWR	Connect to the frame
2, 3	OUTPB	0	Positive PWM for right channel
4,5	PGNDB	PWR	Power stage ground for right channel
6,7	PVCCB	PWR	Power supply for right channel
8, 9	OUTNB	O	Negative PWM output for right channel
10, 11	OUTNA	0	Negative PWM output for left channel
12, 13	PVCCA	PWR	Power supply for left channel
14, 15	PGNDA	PWR	Power stage ground for left channel
16, 17	OUTPA	O	Positive PWM output for left channel
18	PGND	PWR	Power stage ground
19	VDDPW	O	3.3 V (nominal) regulator output referred to ground for power stage
20	STBY	1	Standby mode control
21	MUTE	1	Mute mode control
22	INPA	I	Positive differential input of left channel
23	INNA	I	Negative differential input of left channel
24	ROSC	0	Master oscillator frequency-setting pin
25	SYNCLK	I/O	Clock in/out for external oscillator
26	VDDS	O	3.3 V (nominal) regulator output referred to ground for signal blocks
27	SGND	PWR	Signal ground
28	DIAG	O	Open-drain diagnostic output
29	SVR	O	Supply voltage rejection
30	PLIMIT	1	Output voltage level setting
31	GAIN	I	Gain setting input
32	INPB	1	Positive differential input of right channel
33	INNB	1	Negative differential input of right channel
34	VREF	O	Half VDDS (nominal) referred to ground
35	SVCC	PWR	Signal power supply
36	VSS	O	3.3 V (nominal) regulator output referred to power supply
-	EP	-	Exposed pad for heatsink, to be connected to GND

TDA7492PE

3 Electrical specifications

3.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	DC supply voltage for pins PVCCA, PVCCB, SVCC	30	V
VI	Voltage limits for input pins STBY, MUTE, INNA, INPA, INNB, INPB, GAIN,	-0.3 to +4.6	V
$\mathrm{~T}_{\mathrm{j}}$	MODE	-40 to +150	${ }^{\circ} \mathrm{C}$
T_{op}	Operating junction temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Operating ambient temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

3.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Min.	Typ.	Max.	Unit
$R_{\text {th } j \text {-case }}$	Thermal resistance, junction-to-case	-	2.98		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th } j \text {-amb }}$	Thermal resistance, junction-to-ambient		24		${ }^{\circ} \mathrm{C} / \mathrm{W}$

3.3 Electrical specifications

Unless otherwise stated, the results in Table 1 below are given for the conditions: $\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=6 \Omega, \mathrm{R}_{\mathrm{OSC}}=$ $R 3=33 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{G}_{\mathrm{V}}=20.8 \mathrm{~dB}$ and $\mathrm{Tamb}=25^{\circ} \mathrm{C}$.

Table 4. Electrical specifications

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
V_{cc}	Supply voltage for pins PVCCA, PVCCB, SVCC	-	7	-	26	V
$I_{\text {a }}$	Total quiescent current	No LC filter, no load	-	40		mA
$\mathrm{I}_{\mathrm{qSTBY}}$	Quiescent current in standby	-	-	1	-	$\mu \mathrm{A}$
Vos	Output offset voltage	Vi $=0$, no load		20		mV
locp	Overcurrent protection threshold to switch off the device		9	10	13	A
T_{j}	Junction temperature at thermal shutdown	-	140	150	160	${ }^{\circ} \mathrm{C}$
R_{i}	Input resistance	Differential input		60	-	$\mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{dsON}}$	Power transistor on-resistance	High side	-	0.2	-	Ω
		Low side	-	0.2	-	
G_{V}	Closed-loop gain	GAIN $<0.25^{*}$ Vdd		20.8	-	dB
		$0.25 * V d d<$ GAIN $<0.5^{*} \mathrm{Vdd}$	-	26.8	-	
		$0.5^{*} \mathrm{Vdd}<\mathrm{GAIN}<0.75^{*} \mathrm{Vdd}$	-	30	-	
		GAIN1 $>0.75 * V d d$	-	32.8	-	
$\Delta \mathrm{G}_{V}$	Gain matching	-		-	± 1	dB
CT	Cross talk	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{P}_{\mathrm{o}}=1 \mathrm{~W}$		70	-	dB
SVRR	Supply voltage rejection ratio	$\begin{gathered} \mathrm{fr}=100 \mathrm{~Hz}, \mathrm{Vr}=0.5 \mathrm{Vpp}, \\ \mathrm{C}_{\mathrm{SVR}}=10 \mu \mathrm{~F} \end{gathered}$	-	60	-	dB
$\mathrm{T}_{\mathrm{r}}, \mathrm{T}_{\mathrm{f}}$	Rise and fall times	-	-	24	40	ns
$\mathrm{fsw}_{\text {w }}$	Switching frequency	Internal oscillator		500		kHz
$\mathrm{f}_{\text {SWR }}$	Output switching frequency range	With internal oscillator by changing Rosc ${ }^{(1)}$	450	-	550	kHz
$\mathrm{V}_{\text {inH }}$	Digital input high (H)	-	2.0	-	-	V
$V_{\text {inL }}$	Digital input low (L)		-	-	0.8	
Function mode	Standby, Mute, Play	STBY < 0.5 V Mute $=\mathrm{X}$	Standby			
		STBY > 2.5 V Mute $<0.8 \mathrm{~V}$	Mute			
		STBY $>2.5 \mathrm{~V}$ Mute $>2.5 \mathrm{~V}$	Play			
Amute $^{\text {a }}$	Mute attenuation	$\mathrm{V}_{\text {MUTE }}=1 \mathrm{~V}$	60	80	-	dB

[^0]TDA7492PE

3.4 Stereo BTL application

All specifications are for $\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}, \operatorname{Rosc}=33 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}$, Tamb $=25^{\circ} \mathrm{C}$, unless otherwise specified.

Table 5. Stereo BTL application

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
Po	Output power	$R_{L}=6 \Omega, T H D=10 \%$	-	41	-	W
		$\mathrm{R}_{\mathrm{L}}=6 \Omega, \mathrm{THD}=1 \%$	-	32	-	
		$\begin{gathered} \mathrm{R}_{\mathrm{L}}=6 \Omega, \mathrm{THD}=10 \%, \\ \mathrm{~V}_{\mathrm{CC}}=18 \mathrm{~V} \end{gathered}$	-	27	-	
		$\begin{gathered} \mathrm{R}_{\mathrm{L}}=6 \Omega, \mathrm{THD}=1 \%, \\ \mathrm{~V}_{\mathrm{CC}}=18 \mathrm{~V} \end{gathered}$	-	21	-	
THD	Total harmonic distortion	$\mathrm{P}_{\mathrm{o}}=1 \mathrm{~W}$, fin $=1 \mathrm{kHz}$	-	0.04	-	\%
VN	Total output noise	Inputs shorted and connected to GND, A Curve, $\mathrm{G}_{\mathrm{V}}=20.8 \mathrm{~dB}$	-	150	-	$\mu \mathrm{V}$

3.5 Parallel BTL (mono) application

All specifications are for $\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}$, Rosc $=33 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}, \operatorname{Tamb}=25^{\circ} \mathrm{C}$, INPB, INNB connected to VDDS, unless otherwise specified.

Table 6. Stereo BTL (mono) application

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
Po	Output power	$R_{L}=3 \Omega, T H D=10 \%$	-	90	-	W
		$\mathrm{R}_{\mathrm{L}}=3 \Omega, \mathrm{THD}=1 \%$	-	70	-	
		$\begin{aligned} & R_{L}=3 \Omega, T H D=10 \%, \\ & \mathrm{Vcc}=18 \mathrm{~V} \end{aligned}$	-	53	-	
		$\begin{aligned} & R_{L}=3 \Omega, T H D=1 \%, \\ & \mathrm{Vcc}=18 \mathrm{~V} \end{aligned}$	-	41	-	
THD	Total harmonic distortion	$\mathrm{P}_{\mathrm{o}}=1 \mathrm{~W}$, fin $=1 \mathrm{kHz}$	-	0.04	-	\%
VN	Total output noise	Inputs shorted and connected to GND, A Curve, $\mathrm{G}_{\mathrm{V}}=20.8 \mathrm{~dB}$	-	150	-	$\mu \mathrm{V}$

TDA7492PE

4 Application information

4.1 Gain setting

The four gain settings of the TDA7492PE are set by GAIN (pin 31). Internally, gain is set by changing the feedback resistors of the amplifier. The gain setting pins can be controlled by standard logic drivers.

Table 7. Gain settings

Voltage on GAIN pin	Total gain	Application recommendations
$\mathrm{V}_{\text {GAIN }}<0.25^{*}$ VDDS	20.8 dB	GAIN pin connected to SGND
0.25^{*} VDDS $<\mathrm{V}_{\text {GAIN }}<0.5^{*}$ VDDS	26.8 dB	External resistor divider $<100 \mathrm{k}$
0.5^{*} VDDS $<\mathrm{V}_{\text {GAIN }}<0.75^{*}$ VDDS	30 dB	External resistor divider $<100 \mathrm{k}$
$\mathrm{V}_{\text {GAIN }}>0.75^{*}$ VDDS	32.8 dB	GAIN pin connected to VDDS

4.2 Stereo and mono applications

The TDA7492PE can be used in stereo BTL or in mono BTL configuration. When the input pins, INPB and INNB of the right channel are directly shorted to VDDS (without input capacitors) the device is in mono configuration as shown in Figure 4. Mono BTL settings.

Figure 3. Mono BTL settings

4.3 Smart protections

4.3.1 Overcurrent protection (OCP)

If the overcurrent protection threshold is reached, the power stage will be shut down immediately. The device will recover automatically when the fault is removed.

Table 8. Overcurrent protection

	I (shutdown)
High-side (A)	11.2
Low-side (A)	10.0

The thresholds in mute mode are reduced to about $1 / 2$ and two typical thresholds are as follows.

TDA7492PE

Table 9. Overcurrent protection (mute mode)

	I (shutdown)
High-side (A)	6.2
Low-side (A)	5.9

4.3.3

Thermal protection

When internal die temperature exceeds $140^{\circ} \mathrm{C}$, the device enters into Mute by pulling the MUTE pin low first.
When internal die temperature exceeds $150^{\circ} \mathrm{C}$, the device directly shuts down the power stage. The TDA7492PE automatically recovers when the temperature become lower than the threshold.

Power limit

A built-in power limit is used to limit the output voltage level below the supply rail by limiting the duty cycle. The limit level is set through the voltage at PLIMIT (pin 30). The pin voltage is set by the following equation:

$$
\begin{equation*}
\text { VPLIMIT }=V_{D D}\left[\frac{(R d n / / 400 k)}{(R d n / / 400 k+R u p)}\right] \tag{1}
\end{equation*}
$$

Figure 4. Recommended power limit pin connections

It is recommended that external resistors are less than $40 \mathrm{k} \Omega$ if a voltage divider is used as shown in Figure 5. Recommended power limit pin connections. The relationship of the maximum duty cycle (Dmax) and the voltage at $\mathrm{P}_{\text {LIMIT }}$ is:

$$
\begin{equation*}
\left.\left.\operatorname{Dmax}=\frac{\left\{8.8 \times \frac{V P L I M I T}{V_{c c}-\frac{2 \times V_{c c} \times R s}{R l o a d} \times 2 \times R s}\right.}{\operatorname{Rlog}}\right\} 1\right\} \tag{2}
\end{equation*}
$$

Where $\mathrm{V}_{\text {CC }}$ is the power supply voltage, VPLIMIT is the voltage applied at the $\mathrm{P}_{\text {LIMIT }}$ pin, Rs is the series resistance including Rdson of the power transistor, output filter resistance and bonding wire resistance. Rload is the load resistance.
An example of maximum effective control voltage at $P_{\text {LIMIT }}$ vs. power supply and load resistance is shown in Table 10. Max. effective voltage of $\mathrm{P}_{\text {LIMIT }}$ pin vs. power supply and load.

Table 10. Max. effective voltage of $\mathrm{P}_{\text {LIMIT }}$ pin vs. power supply and load

$\mathbf{R}_{\text {load }}$	Power supply		
	$\mathbf{7 ~ V}$	$\mathbf{1 3 ~ V}$	$\mathbf{2 4 ~ V}$
4Ω	0.71 V	1.32 V	2.44 V
6Ω	0.74 V	1.37 V	2.53 V
8Ω	0.75 V	1.39 V	2.57 V

4.4 Mode selection

The three operating modes of the TDA7492PE are set by two inputs: STBY (pin 20) and MUTE (pin 21).

- Standby mode: all circuits are turned off, very low current consumption.
- Mute mode: inputs are connected to ground and the positive and negative PWM outputs are at 50% duty cycle
- Play mode: the amplifiers are active.

The protection functions of the TDA7492PE are implemented by pulling down the voltages of the STBY and MUTE inputs shown in Figure 6. Standby and mute circuits. The input current of the corresponding pins must be limited to $200 \mu \mathrm{~A}$.

Table 11. Mode settings

Mode	STBY	MUTE
Standby	$\mathrm{L}^{(1)}$	X (do not care)
Mute	H	L
Play	H	H

1. Drive levels defined in Table 4. Electrical specifications.

Figure 5. Standby and mute circuits

Figure 6. Turn-on/off sequence for minimizing speaker "pop"

5

 Schematic diagramFigure 7. Application circuit

Table 12. BTL configuration

Load impedance	L4, L3, L2, L1	C26, C20	C28, C24, C22, C18	R15, R16, R17, R18	C40, C41, C42, C43
4Ω	$15 \mu \mathrm{~h}$	$1 \mu \mathrm{~F}$	220 nF	8Ω	220 nF
6Ω	$22 \mu \mathrm{~h}$	680 nF	220 nF	8Ω	220 nF
8Ω	$22 \mu \mathrm{~h}$	470 nF	220 nF	8Ω	220 nF

TDA7492PE

Unless otherwise stated, measurements were made under the following conditions:
$\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}, \mathrm{RI}=6 \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{Gv}=20.8 \mathrm{~dB}, \mathrm{R}_{\mathrm{OSC}}=33 \mathrm{k} \Omega$, Gain $=20.8 \mathrm{~dB}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
Note: Maximum output power must be derated according to case temperature.

Figure 10. THD vs. output power ($\mathbf{f}=\mathbf{1} \mathbf{k H z}$)

Figure 11. THD vs. output power $(100 \mathrm{~Hz})$

TDA7492PE

Figure 16. PSRR parameter

TDA7492PE

7

Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

7.1 PowerSSO36 EPD package information

Figure 17. PowerSSO-36 EPD package outline

BOTTOM VIEW

TOP VIEW
SECTION A-A
NOT TO SCALE

SECTION B-B
NOT TO SCALE

Table 13. PowerSSO-36 EPD package mechanical data

Symbol	Dimensions in mm			Dimensions in inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
θ	0°	-	8°	0°	-	8°
$\theta 1$	5°	-	10°	5°	-	10°
$\theta 2$	0°	-	-	0°	-	-
A	2.15	-	2.45	0.085	-	0.096
A1	0.00	-	0.10	0.00	-	0.004
A2	2.15	-	2.35	0.085	-	0.093
b	0.18	-	0.32	0.007	-	0.013
b1	0.13	0.25	0.30	0.005	0.010	0.012
c	0.23	-	0.32	0.009	-	0.013
c1	0.20	0.20	0.30	0.008	0.008	0.012
D	10.30 BSC			0.406 BSC		
D1	6.50	-	7.10	0.256	-	0.280
D2	-	3.65	-	-	0.144	-
D3	-	4.30	-	-	0.169	-
e	0.50 BSC			0.020 BSC		
E	10.30 BSC			0.406 BSC		
E1	7.50 BSC			0.295 BSC		
E2	4.10	-	4.70	0.161	-	0.185
E3	-	2.30	-	-	0.091	-
E4	-	2.90	-	-	0.114	-
G1	-	1.20	-	-	0.047	-
G2	-	1.00	-	-	0.039	-
G3	-	0.80	-	-	0.032	-
h	0.30	-	0.40	0.012	-	0.016
L	0.55	0.70	0.85	0.022	0.028	0.033
L1	1.40 REF			0.055 REF		
L2	0.25 BSC			0.010 BSC		
N	36					
R	0.30	-	-	0.012	-	-
R1	0.20	-	-	0.008	-	-
S	0.25	-	-	0.010	-	-

Revision history

Table 14. Document revision history

Date	Revision	Changes
14-Nov-2014	1	Initial release
24-Feb-2017	2	Updated minimum voltage to 7 V throughout datasheet Updated V_{OS} and $\mathrm{T}_{\mathrm{r}}, \mathrm{T}_{\mathrm{f}}$ in Table 4. Electrical specifications. Updated Section 7.1 PowerSSO-36 EPD package information.
21-Sep-2020	3	Updated order code table.

MPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2020 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Audio Amplifiers category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
LV47002P-E NCP2811AFCT1G NCP2890AFCT2G SSM2377ACBZ-R7 IS31AP4915A-QFLS2-TR NCP2820FCT2G TDA1591T TDA7563AH SSM2529ACBZ-R7 SSM2518CBZ-R7 MAX9890AETA+T TS2012EIJT NCP2809BMUTXG NJW1157BFC2 SSM2375CBZ-REEL7 IS31AP4996-GRLS2-TR STPA002OD-4WX NCP2823BFCT1G MAX9717DETA+T MAX9717CETA+T MAX9724AEBC+TG45 LA4450L-E IS31AP2036A-CLS2-TR MAX9723DEBE+T TDA7563ASMTR AS3561-DWLT SSM2517CBZ-R7 MP1720DH-12-LF-P SABRE9601K THAT1646W16-U MAX98396EWB+ PAM8965ZLA40-13 BD37532FV-E2 BD5638NUX-TR BD37512FS-E2 BD37543FS-E2 BD3814FV-E2 TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 AS3410-EQFP500 FDA4100LV MAX98306ETD+T TS4994EIJT NCP2820FCT1G NCP2823AFCT2G NCS2211MNTXG CPA2233CQ16-A1 OPA1604AIPWR

[^0]: 1. $f_{S W}=10^{6} /\left[\left(R_{\text {OSC }} * 12+110\right) * 4\right] \mathrm{kHz}, f_{S Y N C L K}=2 * f_{S W}$ (where ROSC is in $\mathrm{k} \Omega$. and $f_{S W}$ in kHz) with Rosc $=33 \mathrm{k} \Omega$.
