

TRD236D

High voltage fast-switching NPN power transistor

Preliminary data

Features

- High voltage capability
- Low spread of dynamic parameters
- Minimum lot-to-lot spread for reliable operation
- Very high switching speed
- Integrated antiparallel collector-emitter diode

Applications

- Electronic ballast for fluorescent lighting
- Electronic transformer for halogen lamps

This device is an NPN power transistor manufactured using high voltage multi epitaxial planar technology for high switching speeds. It uses a cellular emitter structure with planar edge termination to enhance switching speeds while maintaining a satisfactory RBSOA.

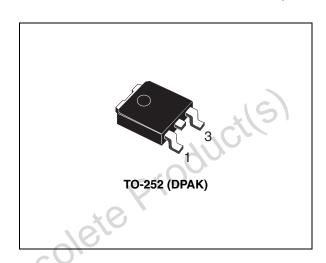


Figure 1. Internal schematic diagram

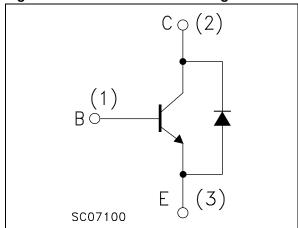


Table 1. Device summary

Part number	Marking	Package	Packaging
TRD236DT4	TRD236D	TO-252	Tape and reel

Contents TRD236D

Contents

1	Electrical ratings 3
2	Electrical characteristics4
	2.1 Electrical characteristics (curves)
	2.2 Test circuits
3	Package mechanical data
4	Revision history11
0050	Electrical characteristics 4 2.1 Electrical characteristics (curves) 5 2.2 Test circuits 7 Package mechanical data 8 Revision history 11

577

TRD236D Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum rating

Symbol	Parameter	Value	Unit
V_{CES}	Collector-emitter voltage (V _{BE} = 0)	700	V
V_{CEO}	Collector-emitter voltage (I _B = 0)	400	V
V _{EBO}	Emitter-base voltage $(I_C = 0, I_B = 2 \text{ A}, t_p < 10 \mu\text{s})$	V _{(BR)EBO}	V
I _C	Collector current (I _C = 0)	4 (C	Α
I _{CM}	Collector peak current (t _P < 5 ms)	8	Α
Ι _Β	Base current	2	Α
I _{BM}	Base peak current (t _P < 5 ms)	Q4	Α
P _{tot}	Total dissipation at $T_c \le 25$ °C	35	W
T _{stg}	Storage temperature	-65 to 150	°C
T_J	Max. operating junction temperature	150	°C
0	roduci(s)		

Electrical characteristics TRD236D

Electrical characteristics 2

 $(T_{case} = 25 \, ^{\circ}C \text{ unless otherwise specified})$

Electrical characteristics Table 3.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cut-off current (V _{BE} = 0)	V _{CE} = 700 V V _{CE} = 700 V T _C = 125 °C			0.1 0.5	mA mA
I _{CEO}	Collector cut-off current (I _B = 0)	V _{CE} = 400 V			0.25	mA
V _{(BR)EBO}	Emitter-base breakdown voltage (I _C = 0)	I _E = 10 mA	9	(18	٧
V _{CEO(sus)} ⁽¹⁾	Collector-emitter sustaining voltage (I _B = 0)	I _C = 10 mA	400	90		٧
V _{CE(sat)} (1)	Collector-emitter saturation voltage	$I_C = 0.8 \text{ A}$ $I_B = 0.1 \text{ A}$ $I_C = 2.5 \text{ A}$ $I_B = 0.6 \text{ A}$			1.1 1.3	V V
V _{BE(sat)} (1)	Base-emitter saturation voltage	$I_C = 1 A$ $I_B = 0.2 A$ $I_C = 2.5 A$ $I_B = 0.5 A$			1.2 1.3	V V
h _{FE}	DC current gain	$I_C = 10 \text{ mA}$ $V_{CE} = 5 \text{ V}$ $I_C = 2.5 \text{ A}$ $V_{CE} = 5 \text{ V}$	10 8		28	
t _s	Inductive load Storage time Fall time	$V_{CC} = 200 \text{ V } I_{C} = 2 \text{ A}$ $I_{B1} = 0.4 \text{ A}$ $V_{BE(off)} = -5 \text{ V}$ $R_{BB} = 0 \Omega$ $L = 200 \mu H$ (see Figure 13)		0.6 0.1		μs μs
V _F	Diode forward voltage	I _F = 2 A			2.5	V
Pulsed dura	Lation = 300 ms, duty cycle ≤ 1.4	I 5%	I			

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

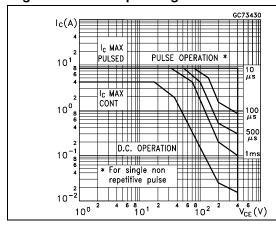


Figure 3. Derating curve

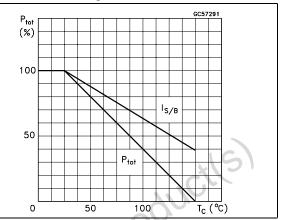


Figure 4. DC current gain (V_{CE} = 1.5 V)

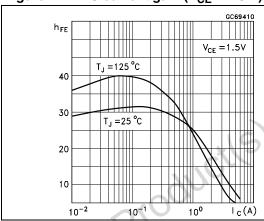


Figure 5. DC current gain $(V_{CE} = 5 V)$

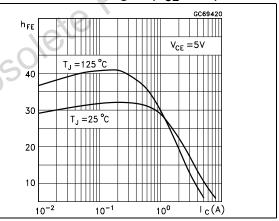
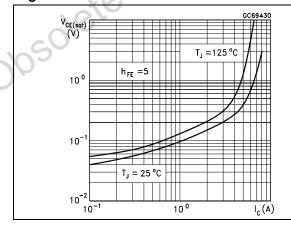
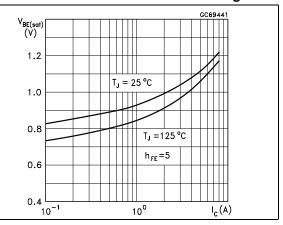
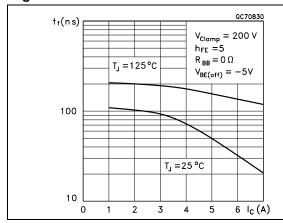




Figure 6. Collector-emitter saturation voltage Figure 7. Base-emitter saturation voltage



Electrical characteristics TRD236D

Figure 8. Inductive load fall time

Figure 9. Inductive load storage time

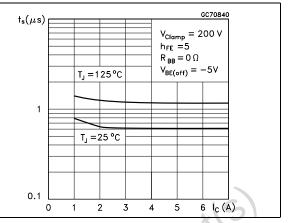
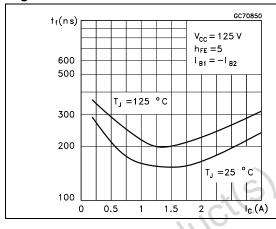



Figure 10. Resistive load fall time

Figure 11. Resistive load storage time

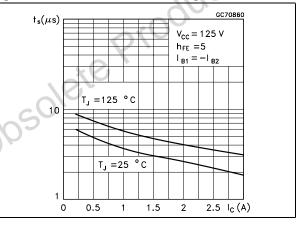
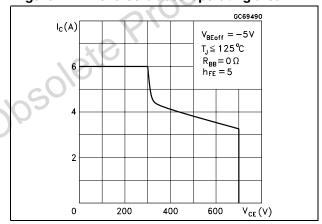
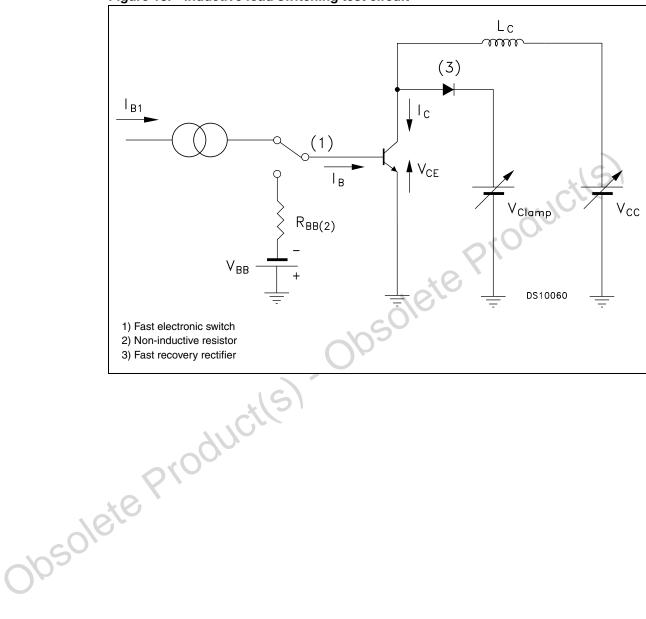
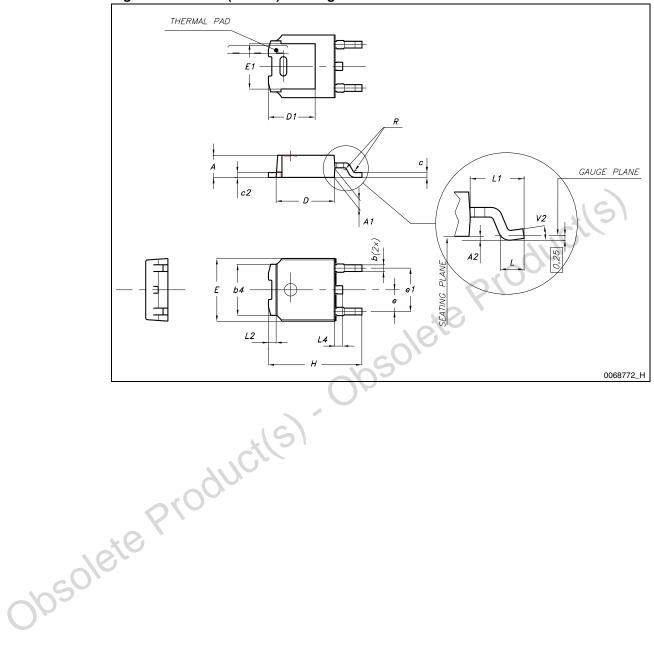




Figure 12. Reverse biased operating area

2.2 Test circuits

Figure 13. Inductive load switching test circuit

3 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Obsolete Product(s). Obsolete Product(s)

Table 4. DPAK (TO-252) mechanical data

Dim.	mm			
Dim.	Min.	Тур.	Max.	
Α	2.20		2.40	
A1	0.90		1.10	
A2	0.03		0.23	
b	0.64		0.90	
b4	5.20		5.40	
С	0.45		0.60	
c2	0.48		0.60	
D	6.00		6.20	
D1		5.10	000	
E	6.40	0	6.60	
E1		4.70		
е		2.28		
e1	4.40	60,	4.60	
Н	9.35	103	10.10	
L	1		1.50	
L1	16	2.80		
L2		0.80		
L4	0.60		1	
R	0,	0.20		
V2	0°		8°	

Figure 14. DPAK (TO-252) drawing

TRD236D Revision history

4 Revision history

Table 5. Document revision history

Date	Revision	Changes
28-Jun-2011	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12 Doc ID 018985 Rev 1

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G

NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 NTE65 C4460 SBC846BLT3G 2SA1419T
TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176

FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E

CMXT2207 TR CPH6501-TL-E MCH4021-TL-E TTC012(Q) BULD128DT4 DDTC114EUAQ-7-F NJL0281DG NSS20500UW3TBG

732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H SZT1010T1G 873787E