

TS419, TS421

Datasheet

360 mW mono amplifier with standby mode

TS419IST : MiniSO8

Standby	8 🖳 Vout2
Bypass 🗗 2	7 🗖 GND
VIN+ 🗗 3	6 🗖 vcc
	5 🔽 VOUT1

TS421IQT : DFN8

				1
GND	1	r	8	Vcc
Vout2	2		7	VOUT1
Standby	3		6	VIN+
Bypass	4	L	5	VIN-

Features

- Operating from V_{CC} = 2 V to 5.5 V
- Standby mode active high (TS419) or low (TS421)
- Output power into 16 Ω: 367 mW @ 5 V with 10% THD+N max or 295 mW @ 5 V and 110 mW @ 3.3 V with 1% THD+N max.
- Low current consumption: 2.5 mA max.
- High signal-to-noise ratio: 95 dB (A) at 5 V
- PSRR: 56 dB typ. at 1 kHz, 46 dB at 217 Hz
- Short-circuit limitation
- ON/OFF click reduction circuitry
- Available in MiniSO8 and DFN 3x3

Applications

- 16/32 Ω earpiece or receiver speaker driver
- Mobile and cordless phones (analog / digital)
- PDAs & computers
- Portable appliances

Description

The TS419/TS421 is a monaural audio power amplifier driving in BTL mode a 16 or 32 Ω earpiece or receiver speaker. The main advantage of this configuration is to get rid of bulky output capacitors.

Capable of descending to low voltages, it delivers up to 220 mW per channel (into 16 Ω loads) of continuous average power with 0.2% THD+N in the audio bandwidth from a 5 V power supply.

An externally controlled standby mode reduces the supply current to 10 nA (typ.). The TS419 / TS421 can be configured by external gain-setting resistors.

Maturity	status	link

TS3431

1 Maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
Vi	Input voltage	-0.3 V to V _{CC} +0.3 V	V
T _{stg}	Storage temperature	-65 to +150	°C
Тј	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction-to-ambient MiniSO8 DFN8	215 70	°C/W
P _d	Power dissipation ⁽²⁾ MiniSO8 DFN8	0.58 1.79	W
ESD	Human body model (pin to pin): TS419 ⁽³⁾ , TS421	1.5	kV
ESD	Machine Model - 220 pF - 240 pF (pin to pin)	100	V
Latch-up	Latch-up Immunity (All pins)	200	mA
	Lead temperature (soldering, 10 s)	250	°C
	Output short-circuit to $V_{\mbox{\scriptsize CC}}$ or $\mbox{\scriptsize GND}$	continuous (4)	

Table 1. Absolute maximum ratings

1. All voltage values are measured with respect to the ground pin.

2. Pd has been calculated with Tamb = 25 °C, Tj = 150 °C.

3. TS419 stands 1.5 KV on all pins except standby pin which stands 1 KV

 Attention must be paid to continous power dissipation (V_{DD} x 300 mA). Exposure of the IC to a short circuit for an extended time period is dramatically reducing product life expectancy.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2 to 5.5	V
RL	Load resistor	≥ 16	Ω
T _{oper}	Operating free air temperature range	-40 to +85	°C
CL	Load capacitor $R_L = 16 \text{ to } 100 \ \Omega$ $R_L > 100 \ \Omega$	400 100	pF
V _{ICM}	Common mode input voltage range	GND to V _{CC} - 1 V	V
V _{STB}	Standby voltage input TS421 ACTIVE / TS419 in STANDBY TS421 in STANDBY / TS419 ACTIVE	$1.5 \le V_{STB} \le V_{CC}$ GND $\le V_{STB} \le 0.4$ (1)	V
R _{thja}	Thermal resistance junction-to-ambient MiniSO8 DFN8 (2)	190 41	°C/W

Symbol	Parameter	Value	Unit
T _{wu}	Wake-up time from standby to active mode (Cb = 1 $\mu\text{F})^{(3)}$	≥ 0.12	S

1. The minimum current consumption (I_{STANDBY}) is guaranteed at V_{CC} (TS419) or GND (TS421) for the whole temperature range.

2. When mounted on a 4-layer PCB.

3. For more details on T_{WU} , please refer to application note section on Wake-up time page 28.

2 Typical application schematics

57

Figure 1. Application schematics

Table 3. Application components information

Components	Functional description
R _{IN}	Inverting input resistor which sets the closed loop gain in conjunction with R _{FEED} . This resistor also forms a high pass filter with C_{IN} (f _{cl} = 1 / (2 x P _i x R _{IN} x C _{IN})).
C _{IN}	Input coupling capacitor which blocks the DC voltage at the amplifier's input terminal.
R _{FEED}	Feedback resistor which sets the closed loop gain in conjunction with R _{IN} . A _V = Closed Loop Gain= 2 x R _{FEED} / R _{IN} .
C _S	Supply bypass capacitor which provides power supply filtering.
CB	Bypass capacitor which provides half supply filtering.

3 Electrical characteristics

57

Table 4. Electrical characteristics V_{CC} = +5 V, GND = 0 V, T_{amb} = 25 °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	
I _{CC}	Supply current No input signal, no load		6	8	mA	
ISTANDBY	Standby current No input signal, V _{STANDBY} = GND for TS421 No input signal, V _{STANDBY} = V _{CC} for TS419		10	1000	nA	
V _{OO}	Output offset voltage No input signal, R _L = 16 Ω or 32 Ω , R _{feed} = 20 k Ω		5	25	mV	
	Output power THD+N = 0.1% Max, F = 1 kHz, R_L = 32 Ω		190			
	Output power THD+N = 1% Max, F = 1 kHz, R _L = 32 Ω	166	207			
Po	Output power THD+N = 10% Max, F = 1 kHz, R_L = 32 Ω		258		m\//	
FO	Output power THD+N = 0.1% Max, F = 1 kHz, R_L = 16 Ω		270			
	Output power THD+N = 1% Max, F = 1 kHz, R_L = 16 Ω	240	295			
	Output power THD+N = 10% Max, F = 1 kHz, R _L = 16 Ω		367			
THD + N	Total harmonic distortion + noise (Av = 2) $R_L = 32 \Omega$, $P_{out} = 150 \text{ mW}$, 20 Hz $\leq F \leq 20 \text{ kHz}$ $R_L = 16 \Omega$, $P_{out} = 220 \text{ mW}$, 20 Hz $\leq F \leq 20 \text{ kHz}$		0.15 0.2		%	
PSRR	Power supply rejection ratio (Av = 2) F = 1 kHz, V_{ripple} = 200 mVpp, input grounded, C_b = 1 μ F	50	56		dB	
SNR	Signal-to-Noise Ratio (Filter Type A, Av = 2) ⁽¹⁾ (R _L = 32 Ω , THD +N < 0.5%, 20 Hz ≤ F ≤ 20 kHz)	85	98		dB	
фм	Phase margin at unity gain $R_L = 16 \Omega, C_L = 400 pF$		58		Degrees	
GM	Gain margin R _L = 16 Ω , C _L = 400 pF		18		dB	
GBP	Gain bandwidth product R_L = 16 Ω		1.1		MHz	
SR	Slew rate R _L = 16 Ω		0.4		V/µS	

1. Guaranteed by design and evaluation.

Table 5. Electrical characteristics V_{CC} = +3.3 V, GND = 0 V, T_{amb} = 25 °C (unless otherwise specified)

Note:

57/

All electrical values are guaranted with correlation measurements at 2 V and 5 V.

Table 6. Electrical characteristics V_{CC} = +2.5 V, GND = 0 V, T_{amb} = 25 °C (unless otherwise specified)

Note:

57/

All electrical values are guaranted with correlation measurements at 2 V and 5 V.

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Supply current		17	25	mA
icc	No input signal, no load		1.7	2.5	IIIA
	Standby current				
ISTANDBY	No input signal, V _{STANDBY} = GND for TS421		10	1000	nA
	No input signal, $V_{STANDBY} = V_{CC}$ for TS419				
Vee	Output offset voltage		5	25	m\/
•00	No input signal, RL = 16 Ω or 32 $\Omega,$ R _{feed} = 20 k Ω		5	25	IIIV
	Output power		20		
	THD+N = 0.1% Max, F = 1 kHz, R_L = 32 Ω		20		
	Output power	10	23		
	THD+N = 1% Max, F = 1 kHz, R_L = 32 Ω	19	23		
	Output power		30		
Po	THD+N = 10% Max, F = 1 kHz, R_L = 32 Ω				
10	Output power		26		IIIVV
	THD+N = 0.1% Max, F = 1 kHz, R_L = 16 Ω	20			
	Output power	24	20		
	THD+N = 1% Max, F = 1 kHz, R_L = 16 Ω	24	-4 50		
	Output power		40		
	THD+N = 10% Max, F = 1 kHz, R _L = 16 Ω		40		
	Total harmonic distortion + noise (Av = 2)		0.4		
THD + N	R_L = 32 Ω,P_out = 150 mW, 20 Hz \leq F \leq 20 kHz		0.1		%
	R_L = 16 Ω,P_{out} = 220 mW, 20 Hz \leq F \leq 20 kHz		0.15		
DCDD	Power supply rejection ratio (Av = 2) ⁽¹⁾	40	54		-ID
PSRR	F = 1 kHz, V _{ripple} = 200 mVpp, input grounded, C _b = 1 μ F	49	54		dВ
	Signal-to-Noise Ratio (Weighted A, Av = 2) ⁽¹⁾	00			-10
SNR	(R _L = 32 Ω , THD +N < 0.5%, 20 Hz ≤ F ≤ 20 kHz)	80	89		dВ
	Phase margin at unity gain		50		During
ФМ	R _L = 16 Ω, C _L = 400 pF		58		Degrees
014	Gain margin				-10
GM	R_{L} = 16 Ω , C_{L} = 400 pF		20		dВ
000	Gain bandwidth product				N 41 1-
GBP	R _L = 16 Ω		1.1		IVIHZ
0.0	Slew rate		0.4		
SK	R _L = 16 Ω		0.4		v/µS

Table 7. Electrical characteristics V_{CC} = +2 V, GND = 0 V, T_{amb} = 25 °C (unless otherwise specified)

1. Guaranteed by design and evaluation.

2.5 2.0 Ta=25°C Ta=85°C Ta=25°C Current Consumption (mA) 2.0 Current Consumption (mA) 1.5 Ta=85°C Ta=-40°C 1.5 1.0 1.0 Ta=-40°C 0.5 0.5 TS421 TS421 Vcc = 5V Vcc = 3.3V No load No load 0.0 0.0 L 0 4 0 1 2 3 5 1 2 3 Standby Voltage (V) Standby Voltage (V)

DS3048 - Rev 5

Figure 34. Output voltage swing for one Amp. vs. power supply voltage

Figure 97. PSRR vs. bypass capacitor Cb = 1 μ F

5 Application information

5.1 BTL configuration principle

The TS419 and TS421 are monolithic power amplifiers with a BTL output type. BTL (Bridge Tied Load) means that each end of the load is connected to two single-ended output amplifiers. Thus, we have:

Single ended output 1 = Vout1 = Vout (V) Single ended output 2 = Vout2 = -Vout (V)

And Vout1 - Vout2 = 2Vout (V)

The output power is:

Pout (2Vout_{RMS})² / R_L (W)

For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single ended configuration.

5.2 Gain in typical application schematic

In flat region (no effect of Cin), the output voltage of the first stage is:

$$Vout = -Vin \frac{Rfeed}{Rin} \left(V \right) \tag{1}$$

For the second stage : Vout2 = -Vout1 (V) The differential output voltage is:

$$Vout2 - Vout1 = 2Vin\frac{Rfeed}{Rin}\left(V\right)$$
⁽²⁾

The differential gain named gain (Gv) for more convenient usage is:

$$Gv = \frac{Vout2 - Vout1}{Vin} = 2 \frac{Rfeed}{Rin}$$
(3)

Remark : Vout2 is in phase with Vin and Vout1 is 180° phased with Vin. It means that the positive terminal of the loud speaker should be connected to Vout2 and the negative to Vout1.

5.3 Low and high frequency response

In low frequency region, the effect of Cin starts. Cin with Rin forms a high pass filter with a -3 dB cut-off frequency

$$F_{CL} = \frac{1}{2\pi RinCin} \Big(Hz \Big)$$

In high frequency region, you can limit the bandwidth by adding a capacitor (Cfeed) in parallel on Rfeed. Its form a low pass filter with a -3 dB cut-off frequency.

$$F_{CH} = \frac{1}{2\pi R feedCfeed} \Big(Hz \Big)$$

5.4 Power dissipation and efficiency

Hypothesis:

- Voltage and current in the load are sinusoidal (Vout and lout)
- Supply voltage is a pure DC source (Vcc)

Regarding the load we have:

$$V_{OUT} = V_{PEAK} \sin \omega t(t) \tag{4}$$

and

$$I_{OUT} = \frac{V_{OUT}}{R_L} \left(A \right) \tag{5}$$

$$P_{OUT} = \frac{V_{PEAK^2}}{2R_L} \left(W \right) \tag{6}$$

Then, the average current delivered by the supply voltage is:

$$Icc_{AVG} = 2 \frac{V_{PEAK}}{\pi R_L} \left(A \right) \tag{7}$$

The power delivered by the supply voltage is $Psupply = Vcc \ lcc_{AVG} (W)$ Then, the power dissipated by the amplifier is Pdiss = Psupply - Pout (W)

$$Pdiss = \frac{2\sqrt{2Vcc}}{\pi\sqrt{R_L}}\sqrt{P_{OUT}} - P_{OUT}\bigg(W\bigg)$$
(8)

and the maximum value is obtained when:

$$\frac{\partial P diss}{\partial P_{OUT}} = 0 \tag{9}$$

and its value is:

$$Pdissmax = \frac{2V_{CC}^2}{\pi^2 R_L} \left(W \right)$$
(10)

Remark : This maximum value is only depending on power supply voltage and load values. The efficiency is the ratio between the output power and the power supply

$$\eta = \frac{P_{OUT}}{P_{\text{supply}}} = \frac{\pi V_{PEAK}}{4V_{CC}} \tag{11}$$

The maximum theoretical value is reached when Vpeak = Vcc, so

$$\frac{\pi}{4} = 78.5\%$$
 (12)

5.5 Decoupling of the circuit

Two capacitors are needed to bypass properly the TS419/TS421. A power supply bypass capacitor C_S and a bias voltage bypass capacitor C_B .

C_S has particular influence on the THD+N in the high frequency region (above 7 kHz) and an indirect influence on power supply disturbances.

With 1 µF, you can expect similar THD+N performances to those shown in the datasheet.

In the high frequency region, if C_S is lower than 1 μ F, it increases THD+N and disturbances on the power supply rail are less filtered.

On the other hand, if C_S is higher than 1 µF, those disturbances on the power supply rail are more filtered.

 C_B has an influence on THD+N at lower frequencies, but its function is critical to the final result of PSRR (with input grounded and in the lower frequency region).

If C_B is lower than 1 $\mu\text{F},$ THD+N increases at lower frequencies and PSRR worsens.

If C_B is higher than 1 μ F, the benefit on THD+N at lower frequencies is small, but the benefit to PSRR is substantial.

Note: that C_{IN} has a non-negligible effect on PSRR at lower frequencies. The lower the value of C_{IN} , the higher the PSRR.

5.6 Wake-up time: T_{WU}

When standby is released to put the device ON, the bypass capacitor C_B will not be charged immediatly. As C_B is directly linked to the bias of the amplifier, the bias will not work properly until the C_B voltage is correct. The time to reach this voltage is called wake-up time or T_{WU} and typically equal to:

 $T_{WU} = 0.15 x C_B$ (s) with C_B in μ F.

Note:

Due to process tolerances, the range of the wake-up time is:

 $0.12xCb < T_{WU} < 0.18xC_B$ (s) with C_B in μ F

When the standby command is set, the time to put the device in shutdown mode is a few microseconds.

5.7 Pop performance

Pop performance is intimately linked with the size of the input capacitor Cin and the bias voltage bypass capacitor C_B .

The size of C_{IN} is dependent on the lower cut-off frequency and PSRR values requested. The size of C_B is dependent on THD+N and PSRR values requested at lower frequencies.

Moreover, C_B determines the speed with which the amplifier turns ON. The slower the speed is, the softer the turn ON noise is.

The charge time of C_B is directly proportional to the internal generator resistance 150 k Ω .

Then, the charge time constant for C_B is

 $T_{\rm B}$ = 150 k Ω x C_B (s)

As C_B is directly connected to the non-inverting input (pin 2 & 3) and if we want to minimize, in amplitude and duration, the output spike on Vout1 (pin 5), C_{IN} must be charged faster than C_B . The equivalent charge time constant of C_{IN} is:

 $T_{IN} = (Rin + Rfeed) \times C_{IN} (s)$

Thus we have the relation:

 $T_{IN} < T_B(s)$

Proper respect of this relation allows to minimize the pop noise.

Remark : Minimizing C_{IN} and C_B benefits both the pop phenomena, and the cost and size of the application.

5.8 Application : Differential inputs BTL power amplifier

The schematic on figure 98, shows how to design the TS419/21 to work in a differential input mode. The gain of the amplifier is:

$$G_{VDIFF} = 2\frac{R_2}{R_1} \tag{13}$$

In order to reach optimal performances of the differential function, R1 and R2 should be matched at 1% max.

Figure 98. Differential input amplifier configuration

Input capacitance C can be calculated by the following formula using the -3 dB lower frequency required. (F_L is the lower frequency required).

$$C \approx \frac{1}{2\pi R_1 F_L} \left(F \right) \tag{14}$$

Note : This formula is true only if:

$$F_{CB} = \frac{1}{942000 \times C_B} \left(Hz \right) \tag{15}$$

is ten times lower than F_L.

The following bill of material is an example of a differential amplifier with a gain of 2 and a -3 dB lower cuttoff frequency of about 80 Hz.

Table 8. Components

Designator	Part type
R1	20 k / 1%
R2	20 k / 1%
C	100 nF
$C_B = C_S$	1 µF
U1	TS419/21

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 MiniSO-8 mechanical data

mm. inch. Dim. Min. Max. Min. Max. Тур. Тур. А 1.1 0.043 0.05 0.10 0.15 0.002 0.004 0.005 A1 A2 0.78 0.86 0.94 0.031 0.031 0.037 b 0.25 0.33 0.4Q 0.010 0.13 0.013 0.13 0.23 0.005 0.007 0.009 С 0.16 2.90 3.00 3.10 0.114 0.118 0.122 D Е 4.75 4.90 5.05 0.187 0.193 0.199 2.90 3.00 3.10 0.114 0.118 0.122 E1 0.65 0.026 е Κ 0° 6° 0° 6° L 0.40 0.55 0.70 0.016 0.022 0.028 0.10 0.004 L1

Table 9. MiniSO-8 mechanical data

Figure 99. MiniSO-8 drawing

6.2 DFN8 (3x3) mechanical data

Dim		mm.			inch.	
Diin.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.80	0.90	1.00	31.5	35.4	39.4
A1		0.02	0.05		0.8	2.0
A2		0.70			27.6	
A3		0.20			7.9	
b	0.18	0.23	0.30	7.1	9.1	11.8
D		3.00			118.1	
D2	2.23	2.38	2.48	87.8	93.7	97.7
E		3.00			118.1	
E2	1.49	1.64	1.74	58.7	64.6	68.5
е		0.50			19.7	
L	0.30	0.40	0.50	11.8	15.7	19.7

Table 10. DFN8 (3x3) mechanical data

Figure 100. DFN8 (3x3) drawing

7 Ordering information

Order code	Temperature range	Package	Packing	Marking
TS419IST	40°C to 95°C	miniSO8	Tana and roal	K19A
TS421IQT	-40 C 10 85 C	DFN8	Tape and Teel	K21A

Table 11. Order codes

Revision history

Table 12. Document revision history

Date	Revision	Changes
06-Feb-2013	4	No history because of migration.
29-May-2019	5	Removed the part numbers TS419IDT, TS421IDT and all its reference throughout the document.

Contents

1	Maxi	mum ratings	2
2	Туріс	al application schematics	4
3	Elect	rical characteristics	5
4	Elect	rical characteristics curves	9
5 Application information		ication information	.34
	5.1	BTL configuration principle	. 34
	5.2	Gain in typical application schematic	. 34
	5.3	Low and high frequency response	. 34
	5.4	Power dissipation and efficiency	. 34
	5.5	Decoupling of the circuit	. 35
	5.6	Wake-up time: T _{WU}	. 35
	5.7	Pop performance	. 36
	5.8	Application : Differential inputs BTL power amplifier	. 36
6 Package information		age information	.38
	6.1	MiniSO-8 mechanical data	. 39
	6.2	DFN8 (3x3) mechanical data	. 39
7	Orde	ring information	.41
Rev	ision l	nistory	.42

List of tables

Table 1	Absolute maximum ratings	2
		-
Table 2.	Operating conditions	2
Table 3.	Application components information	4
Table 4.	Electrical characteristics V _{CC} = +5 V, GND = 0 V, T _{amb} = 25 °C (unless otherwise specified)	ō
Table 5.	Electrical characteristics V _{CC} = +3.3 V, GND = 0 V, T _{amb} = 25 °C (unless otherwise specified)	6
Table 6.	Electrical characteristics V _{CC} = +2.5 V, GND = 0 V, T _{amb} = 25 °C (unless otherwise specified)	7
Table 7.	Electrical characteristics V _{CC} = +2 V, GND = 0 V, T _{amb} = 25 °C (unless otherwise specified)	3
Table 8.	Components	7
Table 9.	MiniSO-8 mechanical data	9
Table 10.	DFN8 (3x3) mechanical data)
Table 11.	Order codes	1
Table 12.	Document revision history	2

List of figures

Figure 1.	Application schematics	. 4
Figure 2.	Open loop gain and phase vs. frequency	. 9
Figure 3.	Open loop gain and phase vs. frequency Vcc = 2 V	. 9
Figure 4.	Open loop gain and phase vs. frequency Vcc = 5 V	. 9
Figure 5.	Open loop gain and phase vs. frequency ZL = 8 Ω	. 9
Figure 6.	Open loop gain and phase vs. frequency RL = 16Ω	10
Figure 7.	Open loop gain and phase vs. frequency RL = 16 Ω , Vcc = 2 V	10
Figure 8.	Open loop gain and phase vs. frequency ZL = 16Ω , Vcc = $5 V$	10
Figure 9.	Open loop gain and phase vs. frequency ZL = 16 Ω , Vcc = 2 V	10
Figure 10.	Open loop gain and phase vs. frequency RL = 32Ω	11
Figure 11.	Open loop gain and phase vs. frequency RL = 32 Ω , Vcc = 2 V	11
Figure 12.	Open loop gain and phase vs. frequency ZL = 32Ω	11
Figure 13.	Open loop gain and phase vs. frequency ZL = 32Ω , Vcc = $2 V$	11
Figure 14.	Current consumption vs. power supply voltage	12
Figure 15.	Current consumption vs. standby voltage Vcc = 5 V	12
Figure 16.	Current consumption vs. standby voltage Vcc = 3.3 V	12
Figure 17.	Current consumption vs. standby voltage Vcc = 2 V	12
Figure 18.	Current consumption vs. standby voltage Vcc = 5 V (TS421)	13
Figure 19.	Current consumption vs. standby voltage Vcc = 3.3 V (TS421)	13
Figure 20.	Current consumption vs. standby voltage Vcc = 2 V (TS421)	13
Figure 21.	Output power vs. power supply voltage RL = 8 Ω	13
Figure 22.	Output power vs. power supply voltage RL = 16Ω	14
Figure 23.	Output power vs. power supply voltage RL = 32 Ω	14
Figure 24.	Output power vs. power supply voltage RL = 64 Ω	14
Figure 25.	Output power vs. load resistor Vcc = 5 V	14
Figure 26.	Output power vs. load resistor Vcc = 3.3 V	15
Figure 27.	Output power vs. load resistor Vcc = 2.5 V	15
Figure 28.	Output power vs. load resistor Vcc = 2 V	15
Figure 29.	Power dissipation vs. output power Vcc = 5 V.	15
Figure 30.	Power dissipation vs. output power Vcc = 3.3 V	16
Figure 31.	Power dissipation vs. output power Vcc = 2.5 V	16
Figure 32.	Power dissipation vs. output power Vcc = 2 V.	16
Figure 33.	Power derating curves.	16
Figure 34.	Output voltage swing for one Amp. vs. power supply voltage	17
Figure 35.	THD + N vs. output power RL = 8 Ω	17
Figure 36.	THD + N vs. output power RL = 16 Ω .	17
Figure 37.	THD + N vs. output power RL = 32Ω .	18
Figure 38.	THD + N vs. output power RL = 8 Ω , Av = 2	18
Figure 39.	THD + N vs. output power RL = 16Ω , Av = $2 \dots $	18
Figure 40.	THD + N vs. output power RL = 32Ω , Av = 2	18
Figure 41.	THD + N vs. output power RL = 8 Ω , Cb = 1 μ F	19
Figure 42.	THD + N vs. output power RL = 16Ω , Cb = 1 μ F	19
Figure 43.	THD + N vs. output power RL = 32 Ω, Cb = 1 μ F	19
Figure 44.	IHD + N vs. frequency RL = 8 Ω.	19
Figure 45.	IHD + N vs. trequency RL = 16 Ω	20
Figure 46.	IHD + N vs. trequency RL = 32 Ω	20
⊢igure 47.	Signal to noise ratio vs. power supply voltage with unweighted filter (20 Hz to 20 kHz).	20
Figure 48.	Signal to noise ratio vs. power supply voltage with weighted filter Type A	20
Figure 49.	Noise floor $VCC = 5 V$.	21
Figure 50.		21
Figure 51.		21
Figure 52.	PSKK vs. power supply voltage	21

Figure 53.	PSRR vs. bypass capacitor Cb = Cin = 1 µF	22
Figure 54.	PSRR vs. bypass capacitor Cb = 4.7 μF	22
Figure 55.	PSRR vs. bypass capacitor Cb = 10 µF	22
Figure 56.	THD + N vs. output power RL = 8 Ω	22
Figure 57.	THD + N vs. output power RL = 16Ω .	23
Figure 58.	THD + N vs. output power RL = 32Ω .	23
Figure 59.	THD + N vs. output power RL = 8 Ω . Av = 4	23
Figure 60.	THD + N vs. output power RI = 16 O . Av = 4	23
Figure 61.	THD + N vs. output power RI = 32 O . Av = 4	24
Figure 62.	THD + N vs. output power RI = 8.0	24
Figure 63.	THD + N vs. output power RL = 16 O	24
Figure 64	THD + N vs. output power RL = 32.0	24
Figure 65	THD + N vs. frequency RI = 8.0	25
Figure 66	THD + N vs. frequency $RL = 16.0$	25
Figure 67	THD + N vs. frequency $RL = 10.22$	25
Figure 67.	Signal to police ratio verse work weltage with upweighted filter (20 Hz to 20 kHz)	20
Figure 60.	Signal-to-holse ratio vs. power supply voltage with unweighted filter Type A	20
Figure 69.	Signal-to-hoise ratio vs power supply voltage with weighted litter Type A	20
Figure 70.		20
Figure 71.		26
Figure 72.		26
Figure 73.		27
Figure 74.	PSRR vs. bypass capacitor Cb = Cin = 1 μ F	27
Figure 75.	PSRR vs. bypass capacitor Cb = Cin = 4.7 μ F	27
Figure 76.	PSRR vs. bypass capacitor Cb = Cin = 10 µF	27
Figure 77.	THD + N vs. output power RL = 8 Ω	28
Figure 78.	THD + N vs. output power RL = 16Ω .	28
Figure 79.	THD + N vs. output power RL = 32Ω .	28
Figure 80.	THD + N vs. output power RL = 8 Ω , Av = 8	28
Figure 81.	THD + N vs. output power RL = 16 Ω, Av = 8	29
Figure 82.	THD + N vs. output power RL = 32Ω , Av = 8	29
Figure 83.	THD + N vs. output power RL = 8 Ω , Cb = 1 μ F	29
Figure 84.	THD + N vs. output power RL = 16 Ω , Cb = 1 μ F	29
Figure 85.	THD + N vs. output power RL = 32Ω , Cb = 1μ F	30
Figure 86.	THD + N vs. frequency RL = 8 Ω .	30
Figure 87.	THD + N vs. frequency RL = 16 Ω .	30
Figure 88.	THD + N vs. frequency RL = 32Ω .	30
Figure 89.	Signal to noise ratio vs. power supply voltage with unweighted filter (20 Hz to 20 kHz).	31
Figure 90.	Signal to noise ratio vs. power supply voltage with weighted filter Type A	31
Figure 91.	Noise floor Vcc = 5 V	31
Figure 92	Noise floor $Vcc = 2 V$	31
Figure 93	PSRR vs. nower supply voltage	32
Figure 94	PSRR vs. input capacitor	32
Figure 95	PSRR vs. hyper capacitor $Ch = Cin = 1$ UF	32
Figure 96	PSRR vs. bypass capacitor $Ch = 4.7 ext{ uF}$	32
Figure 90.	PSRR vs. bypass capacitor $Ch = 1 \mu F$	32 32
Figure 02	Differential input amplifier configuration	36
Figure 90.		20
Figure 400		39
Figure 100.	שרואס (אא) urawilig	40

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Amplifiers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

LV47002P-E NCP2811AFCT1G NCP2890AFCT2G SSM2377ACBZ-R7 IS31AP4915A-QFLS2-TR NCP2820FCT2G TDA1591T TDA7563AH SSM2529ACBZ-R7 SSM2518CBZ-R7 MAX9890AETA+T TS2012EIJT NCP2809BMUTXG NJW1157BFC2 SSM2375CBZ-REEL7 IS31AP4996-GRLS2-TR STPA002OD-4WX NCP2823BFCT1G MAX9717DETA+T MAX9717CETA+T MAX9724AEBC+TG45 LA4450L-E IS31AP2036A-CLS2-TR MAX9723DEBE+T TDA7563ASMTR AS3561-DWLT SSM2517CBZ-R7 MP1720DH-12-LF-P SABRE9601K THAT1646W16-U MAX98396EWB+ PAM8965ZLA40-13 BD37532FV-E2 BD5638NUX-TR BD37512FS-E2 BD37543FS-E2 BD3814FV-E2 TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 AS3410-EQFP-500 FDA4100LV MAX98306ETD+T TS4994EIJT NCP2820FCT1G NCP2823AFCT2G NCS2211MNTXG CPA2233CQ16-A1 OPA1604AIPWR