Micropower with high merit factor CMOS operational amplifiers

Datasheet - production data

Features

- Low supply voltage: $1.5 \mathrm{~V}-5.5 \mathrm{~V}$
- Rail-to-rail input and output
- Low input offset voltage: $800 \mu \mathrm{~V}$ max (A version)
- Low power consumption: $29 \mu \mathrm{~A}$ typical
- Gain bandwidth product: 1.3 MHz typical
- Stable when used in gain configuration
- Micropackages: SOT23-5/6, SC70-5/6
- Low input bias current: 1 pA typical
- Extended temperature range: -40 to $125^{\circ} \mathrm{C}$
- $\quad 4 \mathrm{kV}$ human body model

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Active filtering
- Medical instrumentation

Description

The TSV6290 and the TSV6291 are single operational amplifiers with a high bandwidth which consume only $29 \mu \mathrm{~A}$. They must be used in a gain configuration ($G<-3, G>4$).
With a very low input bias current and low offset voltage ($800 \mu \mathrm{~V}$ maximum for the A version), the TSV629x family of devices is ideal for applications requiring precision. The devices can operate at a power supply ranging from 1.5 to 5.5 V, and therefore suit battery-powered devices, extending battery life.
The TSV6290 comes with a shutdown function.
The TSV6290 and TSV6291 present a high tolerance to ESD, sustaining 4 kV for the human body model.
The TSV6290 and TSV6291 are offered in SOT23-5/6 and SC70-5/6 micropackages, with extended temperature ranges from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

All these features make the TSV629x ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.
Contents
1 Package pin connections 3
2 Absolute maximum ratings and operating conditions 4
3 Electrical characteristics 5
4 Electrical characteristic curves 10
5 Application information 13
5.1 Operating voltages 13
5.2 Rail-to-rail input 13
5.3 Rail-to-rail output 13
5.4 Shutdown function (TSV6290) 14
5.5 Optimization of DC and AC parameters 14
5.6 Driving resistive and capacitive loads 15
5.7 PCB layouts 15
5.8 Macromodel 15
6 Package information 16
6.1 SOT23-5 package information 17
6.2 SOT23-6 package information 18
6.3 SC70-5 (or SOT323-5) package information 19
6.4 SC70-6 (or SOT323-6) package information 20
7 Ordering information 22
8 Revision history 23

1
 Package pin connections

Figure 1: Package pin connections (top view)

2 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings (AMR)

Symbol	Parameter		Value	Unit
Vcc	Supply voltage ${ }^{(1)}$		6	V
$V_{\text {id }}$	Differential input voltage ${ }^{(2)}$		$\pm \mathrm{V}_{\text {cc }}$	
$V_{\text {in }}$	Input voltage ${ }^{(3)}$		$\left(\mathrm{V}_{\mathrm{cc}} \mathrm{C}^{-}\right)-0.2$ to ($\left.\mathrm{V}_{\mathrm{CC}_{+}}\right)+0.2$	
1 ln	Input current ${ }^{(4)}$		10	mA
$\overline{\text { SHDN }}$	Shutdown voltage ${ }^{(3)}$		(VCc_{-}) - 0.2 to ($\mathrm{V}_{\mathrm{CC}_{+}}$) +0.2	V
$\mathrm{T}_{\text {stg }}$	Storage temperature		-65 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum junction temperature		150	
Rthja	Thermal resistance junction-toambient ${ }^{(5) /(6)}$	SOT23-5	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		SOT23-6	240	
		SC70-5	205	
		SC70-6	232	
ESD	HBM: human body model ${ }^{(7)}$		4	kV
	MM: machine model ${ }^{(8)}$		300	V
	CDM: charged device model ${ }^{(9)}$		1.5	kV
	Latch-up immunity		200	mA

Notes:

${ }^{(1)}$ All voltage values, except differential voltage, are with respect to network ground terminal.
${ }^{(2)}$ Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
${ }^{(3)} \mathrm{V}_{\text {cc }}-\mathrm{V}_{\text {in }}$ must not exceed 6 V , Vin must not exceed 6 V .
${ }^{(4)}$ Input current must be limited by a resistor in series with the inputs.
${ }^{(5)}$ Rth are typical values.
${ }^{(6)}$ Short-circuits can cause excessive heating and destructive dissipation.
${ }^{(7)}$ Human body model: 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
${ }^{(8)}$ Machine mode: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor $<5 \Omega$), done for all couples of pin combinations with other pins floating.
${ }^{(9)}$ Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Table 2: Operating conditions

Symbol	Parameter	Value	Unit
V_{cc}	Supply voltage	1.5 to 5.5	V
$\mathrm{~V}_{\mathrm{icm}}$	Common mode input voltage range	$\left(\mathrm{V}_{\mathrm{cc}-}\right)-0.1$ to $\left(\mathrm{V}_{\mathrm{cc}+}\right)+0.1$	
$\mathrm{~T}_{\text {oper }}$	Operating free air temperature range	-40 to 125	${ }^{\circ} \mathrm{C}$

3 Electrical characteristics

Table 3: Electrical characteristics at (VCC+) $=1.8 \mathrm{~V}$ with (VCC-) $=0 \mathrm{~V}$, Vicm = VCC/2, Tamb $=25^{\circ} \mathrm{C}$, and RL connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
DC performance						
$V_{\text {io }}$	Offset voltage	TSV6290, TSV6291			4	mV
		TSV6290A, TSV6291A			0.8	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$, TSV6290, TSV6291			6	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$, TSV6290A, TSV6291A			2	
DVio	Input offset voltage drift			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{l}_{\text {io }}$	Input offset current,$V_{\text {out }}=\mathrm{V}_{\mathrm{cc} / 2}{ }^{(1)}$			1	10	pA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		1	100	
lib	Input bias current,$V_{\text {out }}=V_{c c} / 2{ }^{(1)}$			1	10	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		1	100	
CMR	Common mode rejection ratio, $20 \log \left(\Delta \mathrm{~V}_{\mathrm{ic}} / \Delta \mathrm{V}_{\mathrm{io}}\right)$	0 V to $1.8 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0.9 \mathrm{~V}$	53	74		dB
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	51			
Avd	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$ to 1.3 V	78	95		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	73			
Vor	High-level output voltage,$\mathrm{VOH}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\text {out }}$	$\mathrm{RL}=10 \mathrm{k} \Omega$		5	35	mV
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			50	
Vol	Low-level output voltage	$\mathrm{R} \mathrm{L}=10 \mathrm{k} \Omega$		4	35	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			50	
lout	Isink	$\mathrm{V}_{\text {out }}=1.8 \mathrm{~V}$	6	12		mA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	4			
	Isource	$V_{\text {out }}=0 \mathrm{~V}$	6	10		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	4			
Icc	Supply current (per operator)	No load, $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {cc }} / 2$		25	31	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			33	
AC performance						
GBP	Gain bandwidth product	$\mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$		1.1		MHz
Gain	Minimum gain for stability	$\begin{aligned} & \text { Phase margin }=60^{\circ}, R_{f}=10 \mathrm{k} \Omega \text {, } \\ & R \mathrm{~L}=10 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF} \end{aligned}$		4		V/V
				-3		
SR	Slew rate	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \text { Vout }=0.5 \mathrm{~V} \text { to } 1.3 \mathrm{~V} \end{aligned}$		0.33		V/ $/$ s

Notes:

${ }^{(1)}$ Guaranteed by design.

Table 4: Shutdown characteristics VCC = 1.8 V (TSV6290)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
DC performance						
Icc	Supply current in shutdown mode (all operators)	$\overline{\text { SHDN }}=\left(\mathrm{V}_{\mathrm{cc}}-\right)$		2.5	50	nA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<85^{\circ} \mathrm{C}$			200	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<125^{\circ} \mathrm{C}$			1.5	$\mu \mathrm{A}$
ton	Amplifier turn-on time	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$, $\mathrm{V}_{\text {out }}=\left(\mathrm{V}_{\text {cc- }}\right)$ to ($\left.\mathrm{V}_{\mathrm{cc}}-\right)+0.2 \mathrm{~V}$		300		ns
toff	Amplifier turn-off time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{~V}_{\text {out }}=\left(\mathrm{V}_{\mathrm{cC}_{+}}\right)-0.5 \text { to } \\ & \left(\mathrm{V}_{\mathrm{cC}_{+}+}\right)-0.7 \mathrm{~V} \end{aligned}$		30		
$\mathrm{V}_{\text {IH }}$	$\overline{\text { SHDN }}$ logic high		1.3			V
VIL	$\overline{\text { SHDN }}$ logic low				0.5	
$\mathrm{IIH}^{\text {H }}$	$\overline{\text { SHDN }}$ current high	$\overline{\mathrm{SHDN}}=\left(\mathrm{V}_{\mathrm{CC}+}\right)$		10		pA
IIL	$\overline{\text { SHDN }}$ current low	$\overline{\text { SHDN }}=\left(\mathrm{V}_{\mathrm{cc}}-\right)$		10		
loLeak	Output leakage in shutdown mode	$\overline{\text { SHDN }}=(\mathrm{V}$ cc- -)		50		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		1		nA

Table 5: $(\mathrm{VCC}+)=3.3 \mathrm{~V},(\mathrm{VCC}-)=0 \mathrm{~V}, \mathrm{Vicm}=\mathrm{VCC} / 2, \mathrm{Tamb}=25^{\circ} \mathrm{C}$, RL connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
DC performance						
$V_{\text {io }}$	Offset voltage	TSV6290, TSV6291			4	mV
		TSV6290A, TSV6291A			0.8	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$, TSV6290, TSV6291			6	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$, TSV6290A, TSV6291A			2	
DVio	Input offset voltage drift			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
lio	Input offset current ${ }^{(1)}$			1	10	pA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		1	100	
lib	Input bias current ${ }^{(1)}$			1	10	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		1	100	
CMR	Common mode rejection ratio, $20 \log \left(\Delta \mathrm{~V}_{\mathrm{ic}} / \Delta \mathrm{V}_{\mathrm{io}}\right)$	0 V to 3.3 V , $\mathrm{V}_{\text {out }}=1.65 \mathrm{~V}$	57	79		dB
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	53			
Avd	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, $\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$ to 2.8 V	81	98		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	76			
Vон	High-level output voltage,$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {out }}$	$\mathrm{R} \mathrm{L}=10 \mathrm{k} \Omega$		5	35	mV
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			50	
Vol	Low-level output voltage	$\mathrm{RL}=10 \mathrm{k} \Omega$		4	35	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			50	
lout	Isink	$\mathrm{V}_{\text {out }}=5 \mathrm{~V}$	23	45		mA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	20			
	Isource	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$	23	38		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	20			
Icc	Supply current (per operator)	No load, $\mathrm{V}_{\text {out }}=2.5 \mathrm{~V}$		26	33	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			35	
AC performance						
GBP	Gain bandwidth product	$\mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{CL}=100 \mathrm{pF}$		1.2		MHz
Gain	Minimum gain for stability	$\begin{aligned} & \text { Phase margin }=60^{\circ}, R_{f}=10 \mathrm{k} \Omega \text {, } \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega, C_{\mathrm{L}}=20 \mathrm{pF} \end{aligned}$		4		V/V
				-3		
SR	Slew rate	$\begin{aligned} & \mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{CL}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \text { to } 2.8 \mathrm{~V} \end{aligned}$		0.4		V/ $\mu \mathrm{s}$

Notes:

${ }^{(1)}$ Guaranteed by design.

Table 6: (VCC+) = $5 \mathrm{~V},(\mathrm{VCC}-)=0 \mathrm{~V}$, Vicm = VCC/2, $\mathrm{Tamb}=25^{\circ} \mathrm{C}$, RL connected to VCC/2 (unless otherwise specified)

Symbol	Parameter		Min.	Typ.	Max.	Unit
DC performance						
V io	Offset voltage	TSV6290, TSV6291			4	mV
		TSV6290A, TSV6291A			0.8	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$, TSV6290, TSV6291			6	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$, TSV6290A, TSV6291A			2	
DVio	Input offset voltage drift			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
lio	Input offset current ${ }^{(1)}$			1	10	pA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		1	100	
lib	Input bias current ${ }^{(1)}$			1	10	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		1	100	
CMR	Common mode rejection ratio, $20 \log \left(\Delta \mathrm{~V}_{\mathrm{ic}} / \Delta \mathrm{V}_{\text {io }}\right)$	0 V to $5 \mathrm{~V}, \mathrm{~V}_{\text {out }}=2.5 \mathrm{~V}$	60	80		dB
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	55			
SVR	Supply voltage rejection ratio, $20 \log \left(\Delta \mathrm{~V}_{\mathrm{cc}} / \Delta \mathrm{V}_{\mathrm{io}}\right)$	$V_{C C}=1.8$ to 5 V	75	102		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	73			
Avd	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$ to 4.5 V	85	98		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	80			
Vor	High-level output voltage,$V_{\text {OH }}=V_{\text {CC }}-V_{\text {out }}$	$\mathrm{RL}=10 \mathrm{k} \Omega$		7	35	mV
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			50	
Vol	Low-level output voltage	$\mathrm{RL}=10 \mathrm{k} \Omega$		6	35	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			50	
Iout	Isink	$V_{\text {out }}=5 \mathrm{~V}$	40	69		mA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	35			
	Isource	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$	40	74		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	35			
Icc	Supply current (per operator)	No load, $\mathrm{V}_{\text {out }}=2.5 \mathrm{~V}$		30	36	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			38	
AC performance						
GBP	Gain bandwidth product	$\mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$		1.3		MHz
Gain	Minimum gain for stability	$\begin{aligned} & \text { Phase margin }=60^{\circ}, R_{f}=10 \mathrm{k} \Omega \text {, } \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \end{aligned}$		4		V/V
				-3		
SR	Slew rate	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$		0.5		V/us
e_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}$		70		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
THD	Total harmonic distortion	$\begin{aligned} & \mathrm{Av}=-10, \mathrm{f}_{\text {in }}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{icm}}=\mathrm{Vcc} / 2, \mathrm{~V}_{\mathrm{in}}=40 \mathrm{mVpp} \end{aligned}$		0.15		\%

Notes:

${ }^{(1)}$ Guaranteed by design.

Table 7: Shutdown characteristics VCC = 5 V (TSV6290)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
DC performance						
Icc	Supply current in shutdown mode (all operators)	$\overline{\text { SHDN }}=\mathrm{V}_{\text {IL }}$		5	50	nA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<85^{\circ} \mathrm{C}$			200	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<125^{\circ} \mathrm{C}$			1.5	$\mu \mathrm{A}$
ton	Amplifier turn-on time	$R \mathrm{~L}=5 \mathrm{k} \Omega$, $\mathrm{V}_{\text {out }}=(\mathrm{Vccc}-)$ to $(\mathrm{Vcc-})+0.2 \mathrm{~V}$		300		ns
$\mathrm{t}_{\text {off }}$	Amplifier turn-off time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{~V}_{\text {out }}=\left(\mathrm{V}_{\mathrm{cC}+}\right)-0.5 \mathrm{~V} \text { to } \\ & \left(\mathrm{V}_{\mathrm{cC}+}+5\right)-0.7 \mathrm{~V} \end{aligned}$		30		
V_{1+}	$\overline{\text { SHDN }}$ logic high		4.5			V
VIL	$\overline{\text { SHDN }}$ logic low				0.5	
І ${ }_{\text {H }}$	$\overline{\text { SHDN }}$ current high	$\overline{\mathrm{SHDN}}=\left(\mathrm{V}_{\mathrm{CC}_{+}}\right)$		10		pA
11.	$\overline{\text { SHDN }}$ current low	$\overline{\text { SHDN }}=(\mathrm{Vcc}-)$		10		
loLeak	Output leakage in shutdown mode	$\overline{\text { SHDN }}=\left(\mathrm{V}_{\text {cc- }}\right.$)		50		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		1		nA

4 Electrical characteristic curves

Figure 2: Supply current vs. supply voltage at Vicm = VCC/2

Figure 3: Output current vs. output voltage at $V C C=1.5 \mathrm{~V}$

Figure 4: Output current vs. output voltage at $\mathrm{VCC}=5 \mathrm{~V}$

Figure 5: Peaking at closed loop gain $=-10$ at

Figure 6: Peaking at closed loop gain $=-3, \mathrm{VCC}=1.5 \mathrm{~V}$

Figure 7: Peaking at closed loop gain $=-3, \mathrm{VCC}=5 \mathrm{~V}$

Figure 8: Positive slew rate vs. supply voltage in closed loop

Figure 9: Negative slew rate vs. supply voltage in closed loop

Figure 10: Slew rate vs. supply voltage in open loop

Figure 11: Slew rate timing in open loop

Figure 12: Slew rate timing in closed loop

Figure 13: Noise at $\mathrm{VCC}=5 \mathrm{~V}$

Figure 14: Distortion + noise vs. output voltage at $\mathrm{VCC}=1.8 \mathrm{~V}$

Figure 15: Distortion + noise vs. output voltage at $\mathrm{VCC}=5 \mathrm{~V}$

Figure 16: Distortion + noise vs. frequency at $\mathrm{VCC}=1.8 \mathrm{~V}$

Figure 17: Distortion + noise vs. frequency at $\mathrm{VCC}=5 \mathrm{~V}$

5 Application information

5.1 Operating voltages

The TSV6290 and TSV6291 can operate from 1.5 to 5.5 V . Their parameters are fully specified for $1.8,3.3$ and 5 V power supplies. However, the parameters are very stable in the full V_{cc} range and several characterization curves show the TSV629x characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

5.2 Rail-to-rail input

The TSV6290 and TSV6291 are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common-mode range is extended from ($\mathrm{V}_{\mathrm{cc}-}$) - 0.1 V to $\left(\mathrm{V}_{\mathrm{cc}_{+}}\right)+0.1 \mathrm{~V}$. The transition between the two pairs appears at $\left(\mathrm{V}_{\mathrm{c} \mathrm{C}_{+}}\right)-0.7 \mathrm{~V}$. In the transition region, the performance of CMR, SVR, $\mathrm{V}_{\text {io }}$ and THD is slightly degraded (as shown in Figure 18 and Figure 19 for V_{io} vs. $\mathrm{V}_{\mathrm{icm}}$).

The devices are guaranteed without phase reversal.

5.3 Rail-to-rail output

The operational amplifiers' output levels can go close to the rails: 35 mV maximum above and below the rail when connected to a $10 \mathrm{k} \Omega$ resistive load to $\mathrm{V}_{\mathrm{cc}} / 2$.

5.4 Shutdown function (TSV6290)

The operational amplifier is enabled when the $\overline{\text { SHDN }}$ pin is pulled high. To disable the amplifier, the $\overline{\text { SHDN }}$ must be pulled down to $\mathrm{V}_{\text {cc. }}$. When in shutdown mode, the amplifier's output is in a high impedance state. The $\overline{\text { SHDN }}$ pin must never be left floating, but tied to (Vcc_{+}) or (Vcc_{-}).
The turn-on and turn-off times are calculated for an output variation of $\pm 200 \mathrm{mV}$ (Figure 20 and Figure 21 show the test configurations).

Figure 22: Turn-on time, VCC $=5 \mathrm{~V}$, Vout pulled down,

$$
\mathrm{T}=25^{\circ} \mathrm{C}
$$

(Ime $\quad(\mu \mathrm{s})$

Figure 23: Turn-off time, VCC= 5 V , Vout pulled down,

$$
\mathrm{T}=25^{\circ} \mathrm{C}
$$

5.5 Optimization of DC and AC parameters

These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of the current consumption ($29 \mu \mathrm{~A}$ typical, \min / \max at $\pm 17 \%$). Parameters linked to the current consumption value, such as GBP, SR and $A_{v d}$, benefit from this narrow dispersion.

5.6 Driving resistive and capacitive loads

These products are micropower, low-voltage operational amplifiers optimized to drive rather large resistive loads, above $5 \mathrm{k} \Omega$. For lower resistive loads, the THD level may significantly increase.

The amplifiers have a relatively low internal compensation capacitor, making them very fast while consuming very little. They are ideal when used in a non-inverting configuration or in an inverting configuration in the following conditions.

- \quad IGainl ≥ 3 in an inverting configuration ($C_{L}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$) or Igainl $\geq 10\left(C_{L}=100 \mathrm{pF}, R_{L}=100 \mathrm{k} \Omega\right)$
- Gain ≥ 4 in a non-inverting configuration ($C_{L}=20 \mathrm{pF}, R_{\mathrm{L}}=100 \mathrm{k} \Omega$) or gain ≥ 11 ($\mathrm{CL}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$)

As these operational amplifiers are not unity gain stable, for a low closed-loop gain it is recommended to use the TSV62x ($29 \mu \mathrm{~A}, 420 \mathrm{kHz}$) or TSV63x $(60 \mu \mathrm{~A}, 880 \mathrm{kHz})$ which are unity gain stable.

Table 8: Related products

Part \#	Icc $(\boldsymbol{\mu A})$ at 5 V	GBP $(\mathbf{M H z})$	$\mathbf{S R}(\mathbf{V} / \boldsymbol{\mu s})$	Minimum gain for stability $\left(\mathbf{C}_{\text {Load }}=\mathbf{1 0 0} \mathbf{p F}\right)$
TSV620-1	29	0.42	0.14	1
TSV6290-1	29	1.3	0.5	11
TSV630-1	60	0.88	0.34	1
TSV6390-1	60	2.4	1.1	11

5.7 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

5.8 Macromodel

An accurate macromodel of the TSV6290 and TSV6291 is available on STMicroelectronics' web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV629x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

6.1 SOT23-5 package information

Figure 24: SOT23-5 package outline

Table 9: SOT23-5 mechanical data

Ref.	Millimeters					Max.
	Myp.			Min.	Typ.	Max.
	Min.	Maxensions				
A	0.90	1.20	1.45	0.035	0.047	0.057
A1			0.15			0.006
A2	0.90	1.05	1.30	0.035	0.041	0.051
B	0.35	0.40	0.50	0.014	0.016	0.020
C	0.09	0.15	0.20	0.004	0.006	0.008
D	2.80	2.90	3.00	0.110	0.114	0.118
D1		1.90			0.075	
e		0.95			0.037	
E	2.60	2.80	3.00	0.102	0.110	0.118
F	1.50	1.60	1.75	0.059	0.063	0.069
L	0.10	0.35	0.60	0.004	0.014	0.024
K	0 degrees		10 degrees	0 degrees		10 degrees

6.2 SOT23-6 package information

Figure 25: SOT23-6 package outline

Table 10: SOT23-6 mechanical data

Ref.	Dimensions					
	Millimeters			Max.	Min.	Typ.
	Min.	Typ.	Max.			
A	0.90		1.45	0.035		0.057
A1			0.10			0.004
A2	0.90		1.30	0.035		0.051
b	0.35		0.50	0.013		0.019
c	0.09		0.20	0.003		0.008
D	2.80		3.05	0.110		0.120
E	1.50		1.75	0.060		0.069
e		0.95			0.037	
H	2.60		3.00	0.102		0.118
L	0.10		0.60	0.004		0.024
θ	0°		10°	$0{ }^{\circ}$		10°

6.3 SC70-5 (or SOT323-5) package information

Figure 26: SC70-5 (or SOT323-5) package outline

Table 11: SC70-5 (or SOT323-5) mechanical data

Ref.	Millimeters					Max.
	Mimes.			Max.	Min.	Typ.
	Min.	Typ.	Max.			
A	0.80		1.10	0.032		0.043
A1			0.10			0.004
A2	0.80	0.90	1.00	0.032	0.035	0.039
b	0.15		0.30	0.006		0.012
C	0.10		0.22	0.004		0.009
D	1.80	2.00	2.20	0.071	0.079	0.087
E	1.80	2.10	2.40	0.071	0.083	0.094
E1	1.15	1.25	1.35	0.045	0.049	0.053
e		0.65			0.025	
e1		1.30			0.051	
L	0.26	0.36	0.46	0.010	0.014	0.018
<	0°		8°	0°		8°

6.4 SC70-6 (or SOT323-6) package information

Figure 27: SC70-6 (or SOT323-6) package outline

Table 12: SC70-6 (or SOT323-6) mechanical data

Ref	Millimeters					Inches
	Typ.			Max.	Min.	Typ.
	Min.		1.10	0.031		0.043
A	0.80		0.10			0.004
A1			1.00	0.031		0.039
A2	0.80		0.30	0.006		0.012
b	0.15		0.18	0.004		0.007
c	0.10		2.20	0.071		0.086
D	1.80		1.35	0.045		0.053
E	1.15				0.026	
e		0.65	2.40	0.071		0.094
HE	1.80		0.40	0.004		0.016
L	0.10		0.40	0.004		0.016
Q1	0.10					

Figure 28: SC70-6 (or SOT323-6) recommended footprint

7 Ordering information

Table 13: Order codes

Part number	Temperature range	Package	Packing	Marking
TSV6290ILT	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	SOT23-6	Tape and reel	K106
TSV6290ICT		SC70-6		K16
TSV6290AILT		SOT23-6		K139
TSV6290AICT		SC70-6		K39
TSV6291ILT		SOT23-5		K107
TSV6291ICT		SC70-5		K14
TSV6291AILT		SOT23-5		K113
TSV6291AICT		SC70-5		K15

8 Revision history

Table 14: Document revision history

Date	Revision	Changes
04-Mar-2010	1	Initial release.
	2	Updated datasheet layout Table 3, Table 5, and Table 6: Voн "min." values changed to "max." values. Figure 8, Figure 9, Figure 10: updated Y-axes Table 11: updated A and A2 min. values in inches

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :
NCV33072ADR2G LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD\#PBF ADA4523-1BCPZ-RL7 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCS20282FCTTAG

