

Features

- Low input offset voltage: $200 \mu \mathrm{~V}$ max.
- Rail-to-rail input and output
- Low current consumption: $850 \mu \mathrm{~A}$ max.
- Gain bandwidth product: 9 MHz
- Low supply voltage: 2.7 to 16 V
- Stable when used with Gain ≥ 10
- Low input bias current: 50 pA max.
- High ESD tolerance: 4 kV HBM
- Extended temp. range: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Automotive qualification

Related products

- \quad See the TSX7191 for single op amp version
- \quad See the TSX712 for lower speeds with similar precision
- \quad See the TSX562 for low-power features
- \quad See the TSX632 for micro-power features
- \quad See the TSX922 for higher speeds

Applications

- Battery-powered instrumentation
- Instrumentation amplifier
- Active filtering
- High-impedance sensor interface
- Current sensing (high and low side)

Description

The TSX7192 dual, operational amplifier (op amp) offers high precision functioning with low input offset voltage down to a maximum of $200 \mu \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. In addition, its rail-to-rail input and output functionality allows this product to be used on full range input and output without limitation. This is particularly useful for a lowvoltage supply such as 2.7 V that the TSX7192 is able to operate with.

Thus, the TSX7192 has the great advantage of offering a large span of supply voltages, ranging from 2.7 V to 16 V . It can be used in multiple applications with a unique reference.

Low input bias current performance makes the TSX7192 perfect when used for signal conditioning in sensor interface applications. In addition, low-side and high-side current measurements can be easily made thanks to rail-to-rail functionality. The TSX7192 is a decompensated amplifier and must be used with a gain greater than 10 to ensure stability.

High ESD tolerance (4 kV HBM) and a wide temperature range are also good arguments to use the TSX7192 in the automotive market segment.

Contents

1 Package pin connections 3
2 Absolute maximum ratings and operating conditions 4
3 Electrical characteristics 5
4 Application information 15
4.1 Operating voltages 15
4.2 Input pin voltage ranges 15
4.3 Rail-to-rail input 15
4.4 Rail-to-rail output 15
4.5 Input offset voltage drift over temperature 16
4.6 Long term input offset voltage drift 16
4.7 High values of input differential voltage 17
4.8 Capacitive load 18
4.9 PCB layout recommendations 19
4.10 Optimized application recommendation 19
5 Package information 20
5.1 MiniSO8 package information 21
5.2 SO8 package information 22
6 Ordering information 23
7 Revision history 24

1 Package pin connections

Figure 1: Pin connections (top view)

MiniSO8 and SO8

2 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
$V_{\text {cc }}$	Supply voltage ${ }^{(1)}$	18	V
$V_{\text {id }}$	Differential input voltage ${ }^{(2)}$	$\pm \mathrm{V}_{\text {cc }}$	mV
$V_{\text {in }}$	Input voltage	$\left(\mathrm{V}_{\mathrm{Cc}}\right.$ - $)-0.2$ to $\left(\mathrm{V}_{\mathrm{CC}+}\right)+0.2$	V
$1{ }_{\text {in }}$	Input current ${ }^{(3)}$	10	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum junction temperature	150	
ESD	HBM: human body model ${ }^{(4)}$	4000	V
	MM: machine model ${ }^{(5)}$	100	
	CDM: charged device model ${ }^{(6)}$	1500	
	Latch-up immunity	200	mA

Notes:

${ }^{(1)}$ All voltage values, except the differential voltage are with respect to the network ground terminal.
${ }^{(2)}$ Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. See Section 4.7 for precautions to follow when using the TSX7192 with high differential input voltage.
${ }^{(3)}$ Input current must be limited by a resistor in series with the inputs.
${ }^{(4)}$ According to JEDEC standard JESD22-A114F.
${ }^{(5)}$ According to JEDEC standard JESD22-A115A.
${ }^{(6)}$ According to ANSI/ESD STM5.3.1.

Table 2: Operating conditions

Symbol	Parameter	Value	Unit
V_{cc}	Supply voltage	2.7 to 16	V
$\mathrm{~V}_{\mathrm{icm}}$	Common mode input voltage range	$\left(\mathrm{V}_{\mathrm{cc}-}\right)-0.1$ to $\left(\mathrm{V}_{\mathrm{cc}+}\right)+0.1$	
$\mathrm{~T}_{\mathrm{oper}}$	Operating free air temperature range	-40 to 125	${ }^{\circ} \mathrm{C}$

3 Electrical characteristics

Table 3: Electrical characteristics at VCC $+=4 \mathrm{~V}$ with VCC- $=0 \mathrm{~V}$, Vicm $=\mathrm{VCC} / 2, \mathrm{Tamb}=25^{\circ} \mathrm{C}$, and RL > $10 \mathrm{k} \Omega$ connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$V_{\text {io }}$	Input offset voltage	$\mathrm{T}=25^{\circ} \mathrm{C}$			200	$\mu \mathrm{V}$
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<85^{\circ} \mathrm{C}$			365	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<125^{\circ} \mathrm{C}$			450	
$\Delta \mathrm{V}_{\mathrm{io}} / \Delta \mathrm{T}$	Input offset voltage drift ${ }^{(1)}$				2.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {io }}$	Long term input offset voltage drift ${ }^{(2)}$	$\mathrm{T}=25^{\circ} \mathrm{C}$		1		$\frac{\mathrm{nV}}{\sqrt{\text { month }}}$
l_{ib}	Input bias current ${ }^{(1)}$	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}} / 2$		1	50	pA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			200	
I_{io}	Input offset current ${ }^{(1)}$	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}} / 2$		1	50	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			200	
$\mathrm{R}_{\text {IN }}$	Input resistance			1		T Ω
$\mathrm{CIN}_{\text {IN }}$	Input capacitance			12.5		pF
CMRR	Common mode rejection ratio $20 \log \left(\Delta \mathrm{~V}_{\mathrm{ic}} / \Delta \mathrm{V}_{\mathrm{io}}\right)$	$\mathrm{V}_{\text {icm }}=-0.1$ to 4.1 $\mathrm{V}, \mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}} / 2$	80	98		dB
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	78			
		$\mathrm{V}_{\mathrm{icm}}=-0.1$ to $2 \mathrm{~V}, \mathrm{~V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}} / 2$	91	103		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	86			
Avd	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}=0.3$ to 3.7 V	110	136		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	96			
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}=0.2$ to 3.8 V	110	140		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	96			
$\mathrm{V}_{\text {OH }}$	High level output voltage (voltage drop from $\mathrm{V}_{\mathrm{cc}+}$)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{cc}} / 2$		28	50	mV
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			60	
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{Cl}} / 2$		6	15	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			20	
Vol	Low level output voltage	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{Cc}} / 2$		23	50	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			60	
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{cc}} / 2$		5	15	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			20	
${ }_{\text {out }}$	$I_{\text {sink }}$	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {cc }}$	25	37		mA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	15			
	$I_{\text {source }}$	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$	35	45		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	20			
Icc	Supply current per amplifier	No load, $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}} / 2$		570	800	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			900	

TSX7192

Notes:

${ }^{(1)}$ Maximum values are guaranteed by design.
${ }^{(2)}$ Typical value is based on the Vio drift observed after 1000 h at $125^{\circ} \mathrm{C}$ extrapolated to $25^{\circ} \mathrm{C}$ using the Arrhenius law and assuming an activation energy of 0.7 eV . The operational amplifier is aged in follower mode configuration (see Section 4.6).

Table 4: Electrical characteristics at VCC $+=10 \mathrm{~V}$ with VCC- $=0 \mathrm{~V}$, $\mathrm{Vicm}=\mathrm{VCC} / 2$,
Tamb $=25^{\circ} \mathrm{C}$, and RL>10 k connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$V_{\text {io }}$	Input offset voltage	$\mathrm{T}=25^{\circ} \mathrm{C}$			200	$\mu \mathrm{V}$
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<85^{\circ} \mathrm{C}$			365	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<125^{\circ} \mathrm{C}$			450	
$\Delta \mathrm{V}_{\mathrm{io}} / \Delta \mathrm{T}$	Input offset voltage drift ${ }^{(1)}$				2.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {io }}$	Long term input offset voltage drift ${ }^{(2)}$	$\mathrm{T}=25^{\circ} \mathrm{C}$		25		$\frac{\mathrm{nV}}{\sqrt{\text { month }}}$
$\mathrm{l} \mathrm{l}^{\text {b }}$	Input bias current ${ }^{(1)}$	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}} / 2$		1	50	pA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			200	
I_{io}	Input offset current ${ }^{(1)}$	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}} / 2$		1	50	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			200	
$\mathrm{R}_{\text {IN }}$	Input resistance			1		T Ω
$\mathrm{Cl}_{\text {IN }}$	Input capacitance			12.5		pF
CMRR	Common mode rejection ratio $20 \log \left(\Delta \mathrm{~V}_{\mathrm{ic}} / \Delta \mathrm{V}_{\mathrm{io}}\right)$	$\mathrm{V}_{\text {icm }}=-0.1$ to $10.1 \mathrm{~V}, \mathrm{~V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}} / 2$	88	100		dB
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	84			
		$\mathrm{V}_{\mathrm{icm}}=-0.1$ to $8 \mathrm{~V}, \mathrm{~V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}} / 2$	98	106		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	92			
$A_{v d}$	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}=0.3$ to 9.7 V	110	140		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	100			

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
A_{vd}	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}=0.2$ to 9.8 V	110			dB
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	100			
V ${ }_{\text {OH }}$	High level output voltage (voltage drop from $\mathrm{V}_{\mathrm{cc}+}$)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{Cc}} / 2$		45	70	mV
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			80	
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{Cl}} / 2$		10	30	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			40	
Vol	Low level output voltage	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{Cc}} / 2$		42	70	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			80	
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{Cl}} / 2$		9	30	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			40	
$\mathrm{I}_{\text {out }}$	$\mathrm{I}_{\text {sink }}$	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {cc }}$	30	39		mA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	15			
	$I_{\text {source }}$	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$	50	69		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	40			
Icc	Supply current per amplifier	No load, $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}} / 2$		630	850	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			1000	
GBP	Gain bandwidth product	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	5	9		MHz
фm	Phase margin	$\mathrm{G}=10, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		48		Degrees
SRn	Negative slew rate	$\begin{aligned} & A v=10, V_{\text {out }}=8 V_{\mathrm{PP}}, \\ & 10 \% \text { to } 90 \% \end{aligned}$	1.3	2.3		V/us
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	1.0			
SRp	Positive slew rate	$\begin{aligned} & A v=10, V_{\text {out }}=8 V_{P P}, \\ & 10 \% \text { to } 90 \% \end{aligned}$	1.5	2.5		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	1.1			
e_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}$		22		$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$
		$\mathrm{f}=10 \mathrm{kHz}$		19		
THD+N	Total harmonic distortion + noise	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{Av}=10, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{BW}=22 \mathrm{kHz}, \mathrm{~V}_{\text {out }}=9 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$		0.0001		\%

Notes:

${ }^{(1)}$ Maximum values are guaranteed by design.
${ }^{(2)}$ Typical value is based on the Vio drift observed after 1000 h at $125^{\circ} \mathrm{C}$ extrapolated to $25^{\circ} \mathrm{C}$ using the Arrhenius law and assuming an activation energy of 0.7 eV . The operational amplifier is aged in follower mode configuration (see Section 4.6).

Table 5: Electrical characteristics at VCC $+=16 \mathrm{~V}$ with VCC- $=0 \mathrm{~V}$, Vicm = VCC/2,
Tamb $=25^{\circ} \mathrm{C}$, and RL>10 k connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$V_{\text {io }}$	Input offset voltage	$\mathrm{T}=25^{\circ} \mathrm{C}$			200	$\mu \mathrm{V}$
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<85^{\circ} \mathrm{C}$			365	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<125^{\circ} \mathrm{C}$			450	
$\Delta \mathrm{V}_{\mathrm{io}} / \Delta \mathrm{T}$	Input offset voltage drift ${ }^{(1)}$				2.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {io }}$	Long term input offset voltage drift ${ }^{(2)}$	$\mathrm{T}=25^{\circ} \mathrm{C}$		500		$\frac{\mathrm{nV}}{\sqrt{\text { month }}}$
l ib	Input bias current ${ }^{(1)}$	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}} / 2$		1	50	pA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			200	
$\mathrm{l}_{\text {io }}$	Input offset current ${ }^{(1)}$	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}} / 2$		1	50	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			200	
$\mathrm{R}_{\text {IN }}$	Input resistance			1		T Ω
$\mathrm{Cl}_{\text {IN }}$	Input capacitance			12.5		pF
CMRR	Common mode rejection ratio $20 \log \left(\Delta \mathrm{~V}_{\mathrm{icm}} / \Delta \mathrm{V}_{\mathrm{io}}\right)$	$\mathrm{V}_{\text {icm }}=-0.1$ to $16.1 \mathrm{~V}, \mathrm{~V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}} / 2$	94	107		dB
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	90			
		$\mathrm{V}_{\text {icm }}=-0.1$ to $14 \mathrm{~V}, \mathrm{~V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}} / 2$	100	107		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	90			
SVRR	Supply voltage rejection ratio $20 \log \left(\Delta \mathrm{~V}_{\text {cc }} / \Delta \mathrm{V}_{\text {io }}\right)$	$\mathrm{V}_{\mathrm{cc}}=4$ to 16 V	100	131		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	90			
A_{vd}	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}=0.3$ to 15.7 V	110	146		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	100			
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}=0.2$ to 15.8 V	110	149		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	100			
$\mathrm{V}_{\text {OH }}$	High level output voltage (voltage drop from $\mathrm{V}_{\mathrm{CC}+}$)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		100	130	mV
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			150	
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		16	40	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			50	
Vol	Low level output voltage	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		70	130	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			150	
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		15	40	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			50	
Iout	$I_{\text {sink }}$	$V_{\text {out }}=V_{\text {cc }}$	30	40		mA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	15			
	$I_{\text {source }}$	$V_{\text {out }}=0 \mathrm{~V}$	50	68		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	45			
Icc	Supply current per amplifier	No load, $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}} / 2$		660	900	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			1000	

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
GBP	Gain bandwidth product	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	5	8.5		MHz
¢m	Phase margin	$\mathrm{G}=10, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		51		Degrees
SRn	Negative slew rate	$\begin{aligned} & \mathrm{Av}=10, \mathrm{~V}_{\text {out }}=10 \mathrm{~V}_{\mathrm{PP}}, \\ & 10 \% \text { to } 90 \% \end{aligned}$	1.5	2.4		V/ $/$ s
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	1.1			
SRp	Positive slew rate	$\begin{aligned} & \mathrm{Av}=10, \mathrm{~V}_{\mathrm{out}}=10 \mathrm{~V}_{\mathrm{PP}}, \\ & 10 \% \text { to } 90 \% \end{aligned}$	1.5	2.5		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	1.1			
e_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}$		22		$\frac{n V}{\sqrt{H z}}$
		$\mathrm{f}=10 \mathrm{kHz}$		19		
THD+N	Total harmonic distortion + Noise	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{Av}=10, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text {, } \\ & \mathrm{BW}=22 \mathrm{kHz}, \mathrm{~V}_{\text {out }}=10 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$		0.0001		\%

Notes:

${ }^{(1)}$ Maximum values are guaranteed by design.
${ }^{(2)}$ Typical value is based on the Vio drift observed after 1000 h at $125^{\circ} \mathrm{C}$ extrapolated to $25^{\circ} \mathrm{C}$ using the Arrhenius law and assuming an activation energy of 0.7 eV . The operational amplifier is aged in follower mode configuration (see Section 4.6).

Figure 2: Supply current vs. supply voltage

Figure 3: Input offset voltage distribution at VCC = 16 V

Figure 4: Input offset voltage distribution at $\mathrm{VCC}=4 \mathrm{~V}$

Figure 5: Input offset voltage vs. temperature at $\mathrm{VCC}=16 \mathrm{~V}$

Figure 6: Input offset voltage drift population

Figure 7: Input offset voltage vs. supply voltage at $\mathrm{VICM}=0 \mathrm{~V}$

Figure 8: Input offset voltage vs. common mode voltage at $\mathrm{VCC}=2.7 \mathrm{~V}$

Figure 9: Input offset voltage vs. common mode voltage at $\mathrm{VCC}=16 \mathrm{~V}$

Figure 10: Output current vs. output voltage at $\mathrm{VCC}=2.7 \mathrm{~V}$

Figure 11: Output current vs. output voltage at $\mathrm{VCC}=16 \mathrm{~V}$

Figure 12: Output low voltage vs. supply voltage

Figure 13: Output high voltage (drop from VCC+) vs. supply voltage

Figure 14: Output voltage vs. input voltage close to the rail at $\mathrm{VCC}=16 \mathrm{~V}$

Figure 15: Slew rate vs supply voltage

Figure 17: Positive slew rate at $\mathrm{VCC}=16 \mathrm{~V}$

Figure 18: Response to a small input voltage step

Figure 19: Recovery behavior after a negative step on the input

Figure 20: Recovery behavior after a positive step on the input

Figure 21: Bode diagram at $\mathrm{VCC}=2.7 \mathrm{~V}$

4 Application information

4.1 Operating voltages

The TSX7192 device can operate from 2.7 to 16 V . The parameters are fully specified for $4 \mathrm{~V}, 10 \mathrm{~V}$, and 16 V power supplies. However, the parameters are very stable in the full V_{cc} range. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to $+125^{\circ} \mathrm{C}$.

4.2 Input pin voltage ranges

The TSX7192 device has internal ESD diode protection on the inputs. These diodes are connected between the input and each supply rail to protect the input MOSFETs from electrical discharge.

If the input pin voltage exceeds the power supply by 0.5 V , the ESD diodes become conductive and excessive current can flow through them. Without limitation this over current can damage the device.

In this case, it is important to limit the current to 10 mA , by adding resistance on the input pin, as described in Figure 30.

Figure 30: Input current limitation

4.3 Rail-to-rail input

The TSX7192 device has a rail-to-rail input, and the input common mode range is extended from $\mathrm{V}_{\mathrm{Cc}}-{ }^{-} 0.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}+}+0.1 \mathrm{~V}$.

4.4 Rail-to-rail output

The operational amplifier output levels can go close to the rails: to a maximum of 40 mV above and below the rail when connected to a $10 \mathrm{k} \Omega$ resistive load to $\mathrm{V}_{\mathrm{Cc}} / 2$.

4.5 Input offset voltage drift over temperature

The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset value measured at $25{ }^{\circ} \mathrm{C}$. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at $25^{\circ} \mathrm{C}$ can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.

The maximum input voltage drift over temperature is computed using Equation 1.

Equation 1

$$
\frac{\Delta \mathrm{V}_{\mathrm{io}}}{\Delta \mathrm{~T}}=\max \left|\frac{\mathrm{V}_{\mathrm{io}}(\mathrm{~T})-\mathrm{V}_{\mathrm{io}}\left(25^{\circ} \mathrm{C}\right)}{\mathrm{T}-25^{\circ} \mathrm{C}}\right|
$$

Where $\mathrm{T}=-40^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$.
The TSX7192 datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a C_{pk} (process capability index) greater than 1.3.

4.6 Long term input offset voltage drift

To evaluate product reliability, two types of stress acceleration are used:

- Voltage acceleration, by changing the applied voltage
- Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.

The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2.

Equation 2

$$
A_{F V}=e^{\beta \cdot\left(V_{S}-V_{U}\right)}
$$

Where:
$A_{F V}$ is the voltage acceleration factor
β is the voltage acceleration constant in $1 / \mathrm{V}$, constant technology parameter ($\beta=1$)
V_{S} is the stress voltage used for the accelerated test
V_{U} is the voltage used for the application
The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3.

Equation 3

$$
A_{F T}=e^{\frac{E_{a}}{k} \cdot\left(\frac{1}{T_{u}}-\frac{1}{T_{s}}\right)}
$$

Where:
$A_{\text {FT }}$ is the temperature acceleration factor
E_{a} is the activation energy of the technology based on the failure rate
k is the Boltzmann constant $\left(8.6173 \times 10^{-5} \mathrm{eV} \cdot \mathrm{K}^{-1}\right)$
T_{U} is the temperature of the die when V_{U} is used (K)
T_{S} is the temperature of the die under temperature stress (K)
The final acceleration factor, A_{F}, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4).

Equation 4

$$
A_{F}=A_{F T} \times A_{F V}
$$

A_{F} is calculated using the temperature and voltage defined in the mission profile of the product. The A_{F} value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.

Equation 5

$$
\text { Months }=A_{F} \times 1000 \mathrm{~h} \times 12 \text { months } /(24 \mathrm{~h} \times 365.25 \text { days })
$$

To evaluate the op amp reliability, a follower stress condition is used where V_{cc} is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules).
The $V_{i o}$ drift (in $\mu \mathrm{V}$) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6).

Equation 6

$$
V_{c c}=\max V_{o p} \text { with } V_{i c m}=V_{C c} / 2
$$

The long term drift parameter $\left(\Delta \mathrm{V}_{\mathrm{io}}\right)$, estimating the reliability performance of the product, is obtained using the ratio of the $V_{i o}$ (input offset voltage value) drift over the square root of the calculated number of months (Equation 7).

Equation 7

$$
\Delta \mathrm{V}_{\mathrm{io}}=\frac{\mathrm{V}_{\mathrm{io}} \mathrm{drift}}{\sqrt{(\text { month } \mathrm{s})}}
$$

Where $V_{i o}$ drift is the measured drift value in the specified test conditions after 1000 h stress duration.

4.7 High values of input differential voltage

In a closed loop configuration, which represents the typical use of an op amp, the input differential voltage is low (close to V_{io}). However, some specific conditions can lead to higher input differential values, such as:

- operation in an output saturation state
- operation at speeds higher than the device bandwidth, with output voltage dynamics limited by slew rate.
- use of the amplifier in a comparator configuration, hence in open loop

Use of the TSX7191 in comparator configuration, especially combined with high temperature and long duration can create a permanent drift of V_{io}.

4.8 Capacitive load

Driving large capacitive loads can cause stability problems. Increasing the load capacitance produces gain peaking in the frequency response, with overshoot and ringing in the step response. It is usually considered that with a gain peaking higher than 2.3 dB an op amp might become unstable.

Generally, the unity gain configuration is the worst case for stability and the ability to drive large capacitive loads.

Figure 31 shows the serial resistor that must be added to the output, to make a system stable. Figure 32 shows the test configuration using an isolation resistor, Riso.

Figure 31: Stability criteria with a serial resistor at different supply voltages

Figure 32: Test configuration for Riso

4.9 PCB layout recommendations

Particular attention must be paid to the layout of the PCB, tracks connected to the amplifier, load, and power supply. The power and ground traces are critical as they must provide adequate energy and grounding for all circuits. The best practice is to use short and wide PCB traces to minimize voltage drops and parasitic inductance.

In addition, to minimize parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used.

The copper traces that connect the output pins to the load and supply pins should be as wide as possible to minimize trace resistance.

4.10 Optimized application recommendation

It is recommended to place a 22 nF capacitor as close as possible to the supply pin. A good decoupling will help to reduce electromagnetic interference impact.

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

5.1 MiniSO8 package information

Figure 33: MiniSO8 package outline

Table 6: MiniSO8 package mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.1			0.043
A1	0		0.15	0		0.006
A2	0.75	0.85	0.95	0.030	0.033	0.037
b	0.22		0.40	0.009		0.016
c	0.08		0.23	0.003		0.009
D	2.80	3.00	3.20	0.11	0.118	0.126
E	4.65	4.90	5.15	0.183	0.193	0.203
E1	2.80	3.00	3.10	0.11	0.118	0.122
e		0.65			0.026	
L	0.40	0.60	0.80	0.016	0.024	0.031
L1		0.95			0.037	
L2		0.25			0.010	
k	0°		8°	00°		8°
ccc			0.10			0.004

5.2 SO8 package information

Figure 34: SO8 package outline

Table 7: SO8 package mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
c	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
e		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	1°		8°	10°		8°
ccc			0.10			0.004

6 Ordering information

Table 8: Order codes

Order code	Temperature range	Package	Packaging	Marking
TSX7192IDT	-40 to $+125^{\circ} \mathrm{C}$	SO8	Tape and reel	TSX7192
TSX7192IST		MiniSO8		K210
TSX7192IYDT ${ }^{(1)}$	-40 to $+125^{\circ} \mathrm{C}$, automotive grade	SO8		TSX7192Y
TSX7192IYST ${ }^{(1)}$		MiniSO8		K213

Notes:

${ }^{(1)}$ Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 \& Q 002 or equivalent are on-going.

7 Revision history

Table 9: Document revision history

Date	Revision	Changes
06-Mar-2015	1	Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

$$
\text { © } 2015 \text { STMicroelectronics - All rights reserved }
$$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Precision Amplifiers category:
Click to view products by STMicroelectronics manufacturer:
Other Similar products are found below :
561681F LT6005HGN\#PBF LT6238CGN\#PBF LT6238HGN\#PBF OP05CN8\#PBF OP227GN\#PBF LT6020IDD-1\#PBF LT1124CS8\#TR NCV20166SN2T1G NCS20166SN2T1G NCS21802MUTBG LT1637MPS8 LT1498IS8 LT1492CS8 TLC27L7CP TLV2473CDR LMP2234AMA/NOPB LMP7707MA/NOPB 5962-8859301M2A LMP2231AMAE/NOPB LMP2234AMTE/NOPB LMP8672MA/NOPB LMC6022IM/NOPB LMC6024IM/NOPB LMC6081IMX/NOPB LMP2011MA/NOPB LMP2231AMFE/NOPB LMP2232BMA/NOPB LMP2234AMAE/NOPB LMP7715MFE/NOPB LMP7717MAE/NOPB LMV2011MA/NOPB TL034ACDR TLC2201AMDG4 TLE2024BMDWG4 TS9222IYDT TLV2474AQDRG4Q1 TLV2472QDRQ1 TLE2142MJGB TLC4502IDR TLC27M2ACP TLC2652Q8DG4 OPA2107APG4 TL054AIDR AD8619WARZ-R7 TLC272CD AD8539ARMZ LTC6084HDD\#PBF LTC1050CN8\#PBF LT1024CN\#PBF

