
SENSITIVE 4A SCRS

MAIN FEATURES:

Symbol	Value	Unit
I _{T(RMS)}	4	А
V _{DRM} /V _{RRM}	600 and 800	V
I _{GT}	50 to 200	μΑ

DESCRIPTION

Thanks to highly sensitive triggering levels, the X04 SCR series is suitable for all applications where the available gate current is limited, such as capacitive discharge ignitions, motor control in kitchen aids, overvoltage crowbar protection in low power supplies...

ABSOLUTE RATINGS (limiting values)

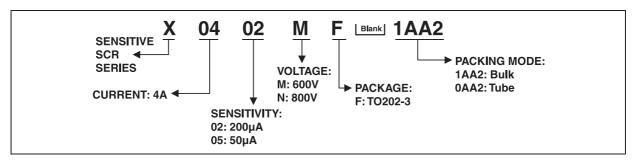
Symbol	Param	Value	Unit		
I _{T(RMS)}	RMS on-state current (180° conduction angle) $TI = 60^{\circ}C$ $Tamb = 25^{\circ}C$		TI = 60°C	4	А
			1.35		
IT _(AV)	Average on-state current (180° conduction angle)		TI = 60°C	2.5	Α
		Tamb = 25°C	0.9		
I _{TSM}	Non repetitive surge peak on-state	tp = 8.3 ms	Tj = 25°C	33	Α
	current		1) = 25 0	30	
l ² t	I ² t Value for fusing	tp = 10 ms	Tj = 25°C	4.5	A ² s
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $tr \le 100$ ns	F = 60 Hz	Tj = 125°C	50	A/µs
I _{GM}	Peak gate current	tp = 20 μs	Tj = 125°C	1.2	Α
P _{G(AV)}	Average gate power dissipation Tj = 125°0		Tj = 125°C	0.2	W
T _{stg} Tj	Storage junction temperature range Operating junction temperature range			- 40 to + 150 - 40 to + 125	°C

September 2000 - Ed: 3 1/5

X04 Series

ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise specified)

Symbol	Test Conditions			X04xx		Unit
				02	05	1
I _{GT}			MIN.	_	20	μΑ
	$V_D = 12 \text{ V}$ $R_L = 140 \Omega$		MAX.	200	50	μ/,
V _{GT}			MAX.	0	.8	V
$V_{\sf GD}$	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $R_{GK} = 1 \text{ k}\Omega$ $Tj = 125 ^{\circ}\text{C}$		MIN.	0.1		V
V_{RG}	I _{RG} = 10 μA		MIN.	8		V
Ι _Η	$I_T = 50$ mA $R_{GK} = 1$ k Ω		MAX.	5		mA
ΙL	$I_G = 1 \text{mA}$ $R_{GK} = 1 \text{k}\Omega$		MIN.	6		mA
dV/dt	$V_D = 67\% V_{DRM} R_{GK} = 1k\Omega$	Tj = 110°C	MIN.	10	15	V/µs
V_{TM}	I _{TM} = 8 A tp = 380 μs	Tj = 25°C	MAX.	1.	.8	V
V _{t0}	Threshold voltage	Tj = 125°C	MAX.	0.95		V
R _d	Dynamic resistance	Tj = 125°C	MAX.	100		mΩ
I _{DRM}	V	Tj = 25°C	MAX.	Ę	5	μA
I_{RRM}	$V_{DRM} = V_{RRM}$ $R_{GK} = 1 \text{ k}\Omega$	Tj = 125°C		1	I	mA

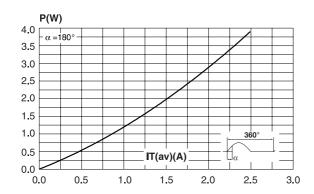

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
R _{th(j-l)}	Junction to leads (DC)	15	°C/W
R _{th(j-a)}	Junction to ambient (DC)	100	

PRODUCT SELECTOR

Part Number	Voltage		Sensitivity	Package	
	600 V	800 V			
X0402MF	Х		200 μΑ	TO202-3	
X0402NF		Х	200 μΑ	TO202-3	
X0405MF	X		50 μA	TO202-3	
X0405NF		X	50 μΑ	TO202-3	

ORDERING INFORMATION



OTHER INFORMATION

Part Number	Marking	Weight	Base Quantity	Packing mode
X04xxyF 1AA2	X04xxyF	0.8 g	250	Bulk
X04xxyF 0AA2	X04xxyF	0.8 g	50	Tube

Note: xx = sensitivity, y = voltage

Fig. 1: Maximum average power dissipation versus average on-state current.

Fig. 2-2: Average and D.C. on-state current versus ambient temperature (device mounted on FR4 with recommended pad layout).

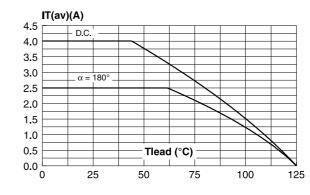
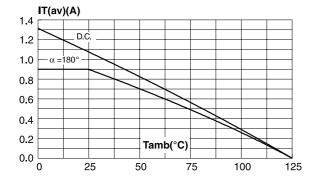
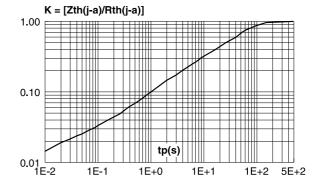
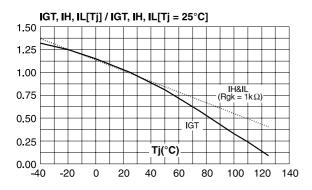
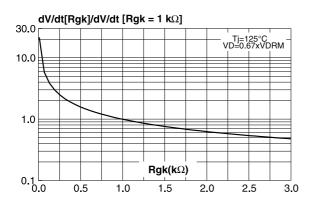




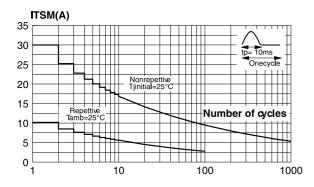
Fig. 2-1: Average and D.C. on-state current

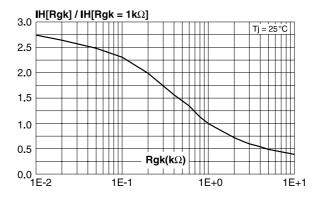
versus lead temperature.

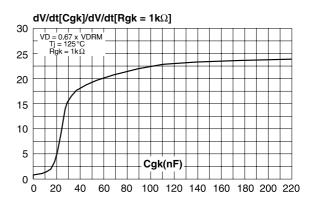

Fig. 3: Relative variation of thermal impedance junction to ambient versus pulse duration.



4


Fig. 4: Relative variation of gate trigger current, holding current and latching current versus junction temperature (typical values).


Fig. 6: Relative variation of dV/dt immunity versus gate-cathode resistance (typical values).


Fig. 8: Surge peak on-state current versus number of cycles.

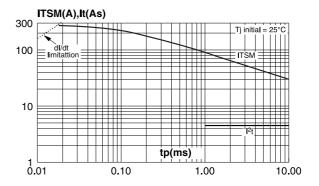

Fig. 5: Relative variation of holding current versus gate-cathode resistance (typical values).

Fig. 7: Relative variation of dV/dt immunity versus gate-cathode capacitance (typical values).

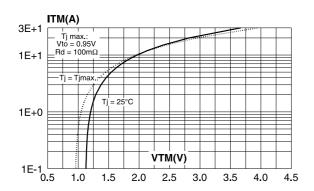


Fig. 9: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10 ms, and corresponding value of l^2t .

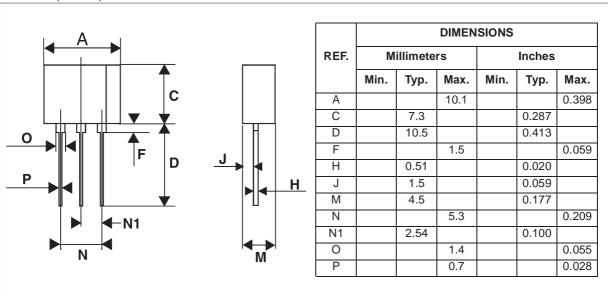

4/5

Fig. 10: On-state characteristics (maximum values).

PACKAGE MECHANICAL DATA

TO202-3 (Plastic)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom

http://www.st.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCRs category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

NTE5428 T1500N16TOF VT T880N16TOF TT162N16KOF-A TT162N16KOF-K TT330N16AOF VS-22RIA20 VS-2N685 057219R

T1190N16TOF VT T1220N22TOF VT T201N70TOH T700N22TOF T830N18TOF TT250N12KOF-K VS-110RKI40 NTE5427 NTE5442

T2160N28TOF VT TT251N16KOF-K VS-22RIA100 VS-16RIA40 TD250N16KOF-A VS-ST110S16P0 T930N36TOF VT T2160N24TOF

VT T1190N18TOF VT T1590N28TOF VT 2N1776A T590N14TOF NTE5375 NTE5460 NTE5481 NTE5512 NTE5514 NTE5518

NTE5519 NTE5529 NTE5553 NTE5557 NTE5557 NTE5567 NTE5570 NTE5570 NTE5574 NTE5576 NTE5578 NTE5579 NTE5589

NTE5592