Aluminum Electrolytic Capacitors

CE-BD CE-BS CE-BSS CE-FE CE-LD CE-FSS CE-FS CE-FH CE-LH CE-AX CE-KX CE-GA CE-LS CE-ZX CE-ZC CE-LX CE-LL Voltage) CE-PC CE-PH CE-PF CE-TH CE-NP CE-FN 1E-SWB -UZ·SZ XX-SAX 1E-SWG ME-HC ME-LS ME-CZ ME-CA ME-CX ME-WX ME-WA ME-WL ME-WG ME-FX

ME-FH MF-PX C·HPD

-FC·FD IE-SWN

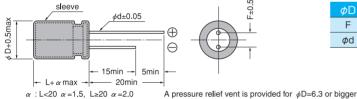
1E-HWN

Aluminum Electrolytic Type / Radial Lead Type

RoHS compliance

Low Impedance

Long Life

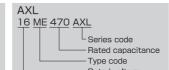

- 105℃, 2,500 to 10,000hours
- Solvent proof (within 5 minutes)

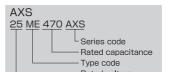
ME-WX (P.84) Low Impedance 1 Long Life ME-AX ← ME-CX (P.80)

Specifications

Items	Condit	ion		Specifications							
Rated voltage (V)	_		6.3	10	16	25	35	50	63	100	
Surge voltage (V)	Room temp	erature		8.0	13	20	32	44	63	79	125
Category temperature range (°C)	_			-55 to +105						-40 to +105	
Capacitance tolerance (%)	120Hz/2	20°C					M : :	±20			
Discipation Factor (ton 8)	to = 5 () 100H=/0		ე°C	0.22	0.19	0.16	0.14	0.12	0.10	0.10	0.10
Dissipation Factor ($tan\delta$)	tanδ (max) 120Hz/20°C			Exceeding 1,000 μ F, +0.02 every 1,000 μ F							
Leakage current (LC)	μA/after 2minutes (max)			The greater value of either 0.01CV or 3							
Impedance ratio at	Based the value at	- 40℃	Z/Z20°C	3	2	2	2	2	2	2	2
low temperature	120Hz, +20℃	− 55℃	Z/Z20°C	4	4	3	3	3	2	2	
	105℃		st		$\phi5: 2,\!500 \text{hours}, \ \phi6.3: 3,\!000 \text{hours}, \ \phi8\times11.5, \ \phi8\times12.5: 3,\!500 \text{hours}, \\ \phi8\times15, \ \phi8\times20: 4,\!500 \text{hours}, \ \phi10: 5,\!000 \text{hours}, \ \phi12.5: 7,\!000 \text{hours}, \ \phi16 \text{ to } \phi18: 10,\!000 \text{hours}, \\ \phi8\times10, \ \phi8\times20: 4,\!500 \text{hours}, \ \phi10: 5,\!000 \text{hours}, \ $						
Endurance	rated voltage applied (With the rated	ΔC	C/C	Within ±20% of the initial value							
	ripple current)	tar	ηδ	Less than 200% of the specified value							
		L	С			Less	than the	specified	value		

Dimensions


φD	5	6.3	8	10	12.5	16	18
F	2.0	2.5	3.5	5.0	5.0	7.5	7.5
φ d	0.5	0.5	0.6	0.6	0.6	0.8	0.8


■ Size, Impedance, Rated Ripple Current

V		6.3		10			
Case size Items (pDxL(mm)	Capacitance (µF)	Impedance(Ωmax) (20°C/100kHz)	Rated ripple current(mArms) (105°C/10k to 200kHz)	Capacitance (µF)	Impedance(Ωmax) (20℃/100kHz)	Rated ripple current(mArms) (105°C/10k to 200kHz)	
5×11	150	0.42	190	100	0.42	190	
6.3×11	270	0.22	300	220	0.22	300	
8×11.5	470	0.11	560	330	0.11	560	
8×12.5	560	0.11	570	390	0.11	570	
8×15	680	0.085	730	470	0.085	730	
8×20	1000	0.069	800	★ 1 680	0.069	800	
10×12.5	820	0.085	800	680	0.085	800	
10×16	1200	0.062	1050	820	0.062	1050	
10×20	1500	0.044	1250	1200	0.044	1250	
10×22	1800	0.039	1450	1500	0.039	1450	
12.5×20	2700	0.038	1600	2200	0.038	1600	
12.5×25	3900	0.029	1800	2700	0.029	1800	
16×25	5600	0.022	2100	3900	0.022	2100	
16×31.5	8200	0.018	2350	5600	0.018	2350	
16×35	10000	0.018	2550	6800	0.018	2550	
18×35 <u>.</u> 5	12000	0.018	2800	8200	0.018	2800	

★1 AXL ★2 AXS

Part number 10 ME 470 AX Series code - Rated capacitance Type code

Aluminum Electrolytic Type / Radial Lead Type

RoHS compliance

■ Size, Impedance, Rated Ripple Current

V		16		25			
Case size Items φDxL(mm)	Capacitance (µF)	lmpedance(Ωmax) (20℃/100kHz)	Rated ripple current(mArms) (105°C/10k to 200kHz)	Capacitance (µF)	Impedance(Ωmax) (20℃/100kHz)	Rated ripple current(mArms) (105°C/10k to 200kHz)	
5×11	68	0.42	190	47	0.42	190	
6.3×11	150	0.22	300	100	0.22	300	
8×11.5	220	0.11	560	150	0.11	560	
8×12.5	270	0.11	570	180	0.11	570	
8×15	330	0.085	730	220	0.085	730	
8×20	★ 1 470	0.069	800	330	0.069	800	
10×12.5	470	0.085	800	270	0.085	800	
10×16	560	0.062	1050	390	0.062	1050	
10×16	680	0.062	1050	★ 2 470	0.068	1050	
10×20	820	0.044	1250	560	0.044	1250	
10×22	1000	0.039	1450	680	0.039	1450	
12.5×20	1200	0.038	1600	1000	0.038	1600	
12.5×25	1800	0.029	1800	1200	0.029	1800	
16×25	2700	0.022	2100	1800	0.022	2100	
16×31.5	3900	0.018	2350	2700	0.018	2350	
16×35	4700	0.018	2550	3300	0.018	2550	
18×35.5	5600	0.018	2800	3900	0.018	2800	
V		2F			50		

V		35		50			
Case size Items pDxL(mm)	Capacitance (µF)	Impedance(Ωmax) (20°C/100kHz)	Rated ripple current(mArms) (105°C/10k to 200kHz)	Capacitance (µF)	Impedance(Ωmax) (20°C/100kHz)	Rated ripple current(mArms) (105°C/10k to 200kHz)	
5×11	4.7	1.2	115	4.7	2.0	90	
5×11	10	0.90	140	10	1.7	110	
5×11	22	0.42	190	15	1.2	130	
5×11	33	0.42	190	22	0.70	160	
6.3×11	47	0.22	300	33	0.43	220	
6.3×11	68	0.22	300	47	0.43	220	
8×11.5	100	0.11	560	68	0.26	360	
8×12.5	120	0.11	570	82	0.24	400	
8×15	150	0.085	730	100	0.18	500	
8×20	★ 1 220	0.069	800	150	0.16	650	
10×12.5	220	0.085	800	120	0.16	550	
10×16	270	0.062	1050	180	0.12	760	
10×20	330	0.044	1250	270	0.088	950	
10×22	470	0.039	1450	330	0.072	1000	
12.5×20	680	0.038	1600	470	0.059	1200	
12.5×25	1000	0.029	1800	560	0.045	1400	
16×25	1500	0.022	2100	1000	0.039	1750	
16×31.5	2200	0.018	2350	1200	0.025	2100	
16×35	★ 1 2200	0.018	2550	1500	0.025	2300	
18×35.5	2700	0.018	2800	1800	0.024	2400	

V		63		100		
Case size Items pDxL(mm)	Capacitance (µF)	Impedance(Ωmax) (20°C/100kHz)	Rated ripple current(mArms) (105°C/10k to 200kHz)	Capacitance (µF)	Impedance(Ωmax) (20°C/100kHz)	Rated ripple current(mArms) (105°C/10k to 200kHz)
5×11	18	1.6	140	5.6	2.7	120
6.3×11	33	0.90	200	12	1.4	170
8×11.5	68	0.52	275	22	0.81	230
8×12.5	★ 1 68	0.47	300	★ 1 22	0.79	250
8×15	82	0.34	360	27	0.64	295
8×20	★ 1 120	0.21	510	★ 1 39	0.36	400
10×12.5	120	0.26	420	39	0.39	360
10×16	150	0.20	525	47	0.35	420
10×20	220	0.15	765	68	0.24	630
10×22	270	0.12	840	82	0.21	700
12.5×20	330	0.10	960	100	0.15	800
12.5×25	470	0.064	1200	150	0.11	920
16×25	680	0.052	1500	220	0.071	1100
16×31.5	1000	0.042	1750	330	0.049	1490
16×35	1200	0.036	1920	390	0.043	1630

Aluminum Electrolytic Capacitors

· ·
OF DE
CE-BE
CE-BD
CE-BS
CE-BSS
CE-FE
CE-LD
CE-FSS
CE-FS
CE-FH
CE-LH
CE-AX
CE-KX
CE-GA
CE-LS
CE-ZX
CE-ZC
CE-LX
CE-LL
CE-LH(High Voltage)
CE-PC
CE-PH
CE-PS
CE-PF
CE-TH
CE-JX
CE-NP
CE-FN
ME-SWB
ME-UZ·SZ
ME-UAX·SAX
ME-SWG
ME-HC
ME-LS
ME-CZ
ME-CA
ME-CX
ME-AX
ME-WX
ME-WA
ME-WL
ME-WG
ME-FX
ME-FH
ME-PX
ME-HPC·HPD
ME-FC·FD
ME-SWN
ME-HWN

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by SUN manufacturer:

Other Similar products are found below:

LXY50VB4.7M-5X11 RFO-100V471MJ7P# ECE-A1EGE220 B41041A2687M8 B41041A7226M8 B41044A7157M6

EKXG201EC3101ML20S EKZM160ETD471MHB5D NCD681K10KVY5PF NEV1000M25EF-BULK NEV100M35DC NEV100M63DE

NEV220M25DD-BULK NEV.33M100AA NEV4700M50HB NEV.47M100AA NEVH1.0M250AB NEVH3.3M250BB NEVH3.3M450CC

KM4700/16 KME50VB100M-8X11.5 SG220M1CSA-0407 ES5107M016AE1DA ESMG160ETD102MJ16S ESX472M16B

SZ010M1500A5S-1015 227RZS050M 476CKH100MSA 477RZS050M UVX1V101KPA1FA UVX1V222MHA1CA KME25VB100M-6.3X11 VTL100S10 VTL470S16A 511D336M250EK5D 052687X ECE-A1CF471 EKMA500ELL4R7ME07D NRE
S560M16V6.3X7TBSTF RGA221M1CTA-0611G ERZA630VHN182UP54N UPL1A331MPH SK035M0100AZS-0611 NEV1000M6.3DE

NEV100M16CB NEV100M50DD-BULK NEV2200M16FF NEV220M50EE NEV2.2M50AA