

SUPER-SEMI

SUPER-MOSFET

Super Gate Metal Oxide Semiconductor Field Effect Transistor

100V Super Gate Power Transistor SG*100N08L

Rev. 1.0 Jul. 2016

www.supersemi.com.cn

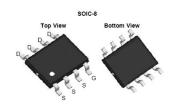
Jun, 2015

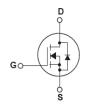
SG-FET

SGO100N08L 100V N-Channel MOSFET

Description

The SG-MOSFET uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.


Features


VDSID (at Vgs=10V)RDS(on) (at Vgs=10V)

100V 14A <8.2mΩ <10.5mΩ

(at Vgs=4.5V)
• Excellent Avalanche Performance

SGO100N08L

Absolute Maximum Ratings

Symbol	Parameter	SGO100N08L	Unit
V_{DS}	Drain-Source Voltage	100	V
I _D	Drain Current -Continuous (TA = 25°C) -Continuous (TA = 70°C)	14* 11*	А
I _{DM}	Drain Current - Pulsed (Note 1)	56*	А
V_{GS}	Gate-Source voltage	±20	V
I _{AS}	Avalanche Current, single pulse (Note 1)		
E _{AS}	Avalanche Energy, single pulse, L=0.5mH (Note 1)	nH 720	
P _D	Power Dissipation - TA = 25°C (Note 2) - TA = 70°C	·	
T_{J} , T_{STG}	Operating and Storage Temperature Range	-55 to +150	°C

^{*} Drain current limited by maximum junction temperature.

Thermal Characteristics

Symbol	Parameter	SGO100N08L	Unit
	Maximum Junction-to-Ambient, t<10s(Note 3)	31(typ.)	°C/W
$R_{\theta JA}$	Maximum Junction-to-Ambient, Steady- State(Note 3,4)	59(typ.)	°C/W
$R_{\theta JL}$	Maximum Junction-to-Lead, Steady-State	16(typ.)	°C/W

Electrical Characteristics TJ = 25°C unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Off Characteri	istics					
BVDSS	Drain-Source Breakdown Voltage	VGS = 0V, ID = 250µA, TJ = 25°C	100	115	-	V
IDSS	Zero Gate Voltage Drain Current	VDS = 100V, VGS = 0V -TJ = 55°C	-		1 5	μA μA
IGSSF	Gate-Body Leakage Current, Forward	Vgs = 20V, Vds = 0V	-	-	100	nA
IGSSR	Gate-Body Leakage Current, Reverse	Vgs = -20V, Vps = 0V	-	-	-100	nA
On Characteri	stics					
VGS(th)	Gate Threshold Voltage	VDS = VGS, ID = 250µA	1.4	2.0	2.3	V
RDS(on)	Static Drain-Source On- Resistance	VGS = 10V, ID = 14A VGS = 4.5V, ID = 12A	-	6.8 8.9	8.2 10.5	mΩ
gFS	Forward Transconductance	VDS = 5V, ID = 12A	-	45	-	S
Rg	Gate resistance	VGS=0V, VDS=0V, f=1MHz	-	1.4	-	Ω
Dynamic Char	racteristics					
Ciss	Input Capacitance	VDS = 50V, VGS = 0V,	-	2570	-	pF
Coss	Output Capacitance	f=1MHz	-	470	-	pF
Crss	Reverse Transfer Capacitance		-	16	-	pF
Switching Cha	aracteristics					
td(on)	Turn-On Delay Time	$VDS = 50V$, $RG = 3\Omega$,	-	10	-	ns
tr	Turn-On Rise Time	ID = 12A , VGS = 10V (Note 5, 6)	-	6.5	-	ns
td(off)	Turn-Off Delay Time		-	31	-	ns
tf	Turn-Off Fall Time		-	11	-	ns
Qg(10V)	Total Gate Charge	VDS = 50V, ID = 12A,	-	39	-	nC
Qg(4.5V)	Total Gate Charge	VGS = 0~10V (Note 5, 6)	-	19	-	nC
Qgs	Gate-Source Charge		-	7	-	nC
Qgd	Gate-Drain Charge		-	9.5	-	nC
Drain-Source	Diode Characteristics and Maximum F	Ratings				
Is	Maximum Continuous Drain-Source	Maximum Continuous Drain-Source Diode Forward Current		-	4.5	Α
Ism	Maximum Pulsed Drain-Source Di	Maximum Pulsed Drain-Source Diode Forward Current		-	14	Α
VsD	Drain-Source Diode Forward Voltage	VGS = 0V, IS = 1A	-	0.7	1.0	V
trr	Reverse Recovery Time	VGS = 0V, VR=50V, IS = 12A	-	31	-	ns
Qrr	Reverse Recovery Charge	dlF/dt =500A/µs (Note 5)	-	145	-	nC

NOTES:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ=25°C.

 2. The power dissipation PD is based on TJ(MAX)=150°C, using ≤ 10s junction-to-ambient thermal resistance.

- 4. The R_{BJA} is the sum of the thermal impedance from junction to lead R_{BJL} and lead to ambient. 5. Pulse Test: Pulse width \leq 300us, Duty Cycle \leq 2%
- 6. Essentially Independent of Operating Temperature Typical Characteristics

^{3.} The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The value in any given application depends on the user's specific board design.

Typical Performance Characteristics

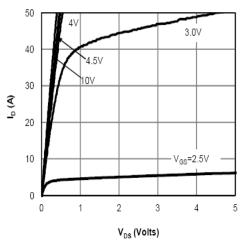
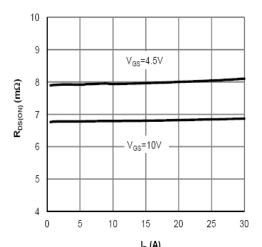



Figure 1: On-Region Characteristics

 $\rm I_{\rm D}$ (A) Figure 3: On-Resistance vs Drain current and Gate voltage

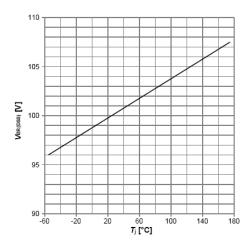


Figure 5: Drain-Source breakdown voltage

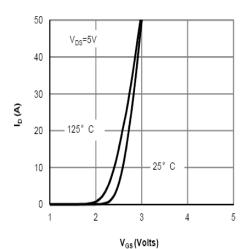


Figure 2: Transfer Characteristics

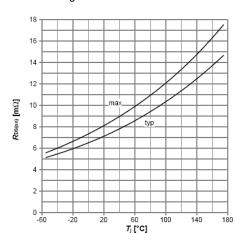


Figure 4: On-Resistance vs Junction Temperature

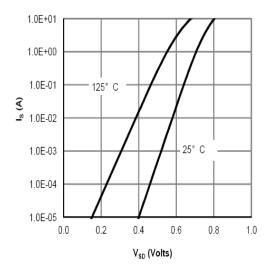


Figure 6: Body-Diode Characteristics

Typical Performance Characteristics

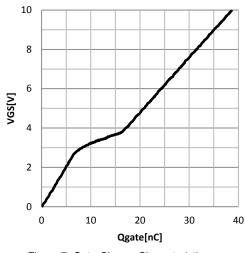


Figure 7: Gate-Charge Characteristics

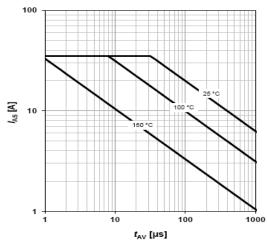


Figure 9: Avalanche Characteristics

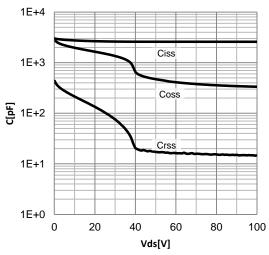


Figure 8: Capacitance Characteristics

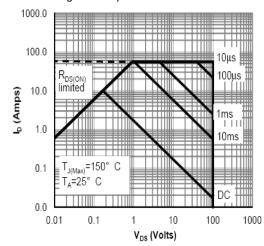


Figure 10: Maximum Forward Biased Safe Operating Area

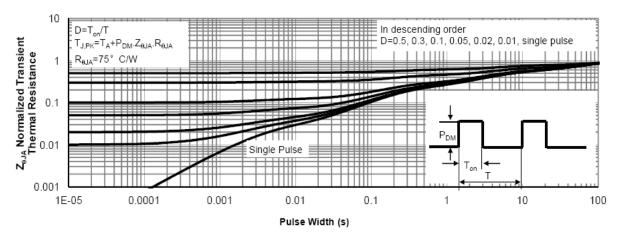
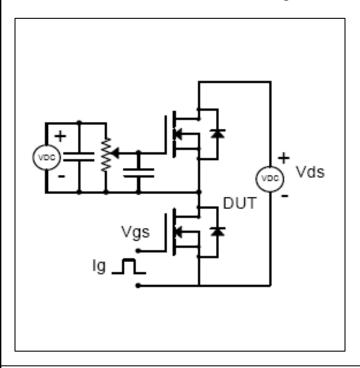
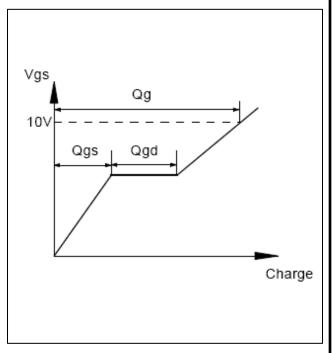
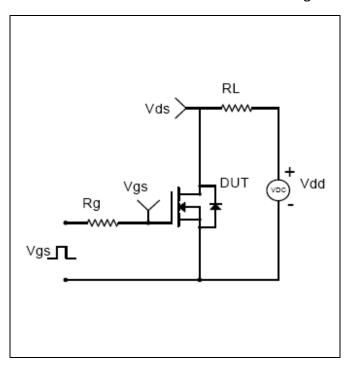
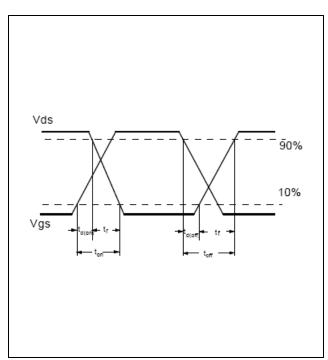
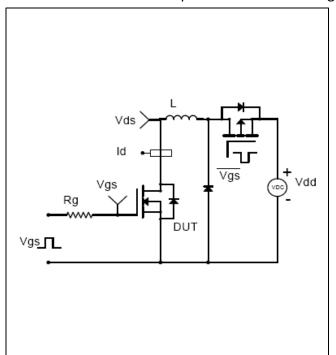




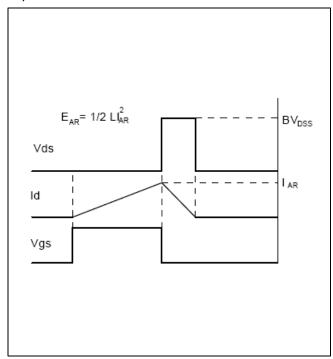
Figure 11: Maximum Transient Thermal Impedance

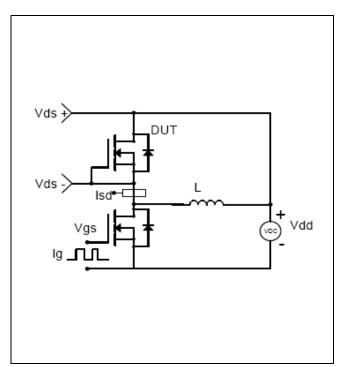


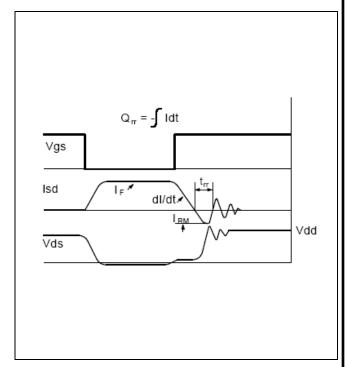

Gate Charge Test Circuit and Waveform

Resistive Switching Test Circuit and Waveforms

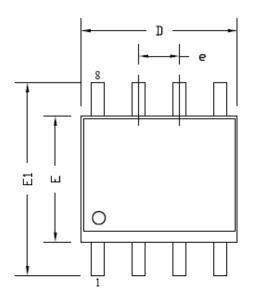


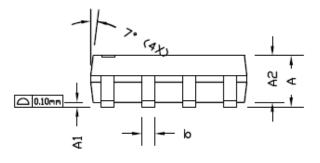


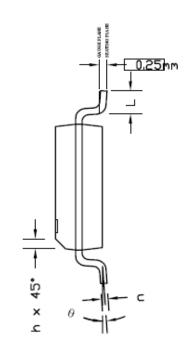

Test circuits


Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

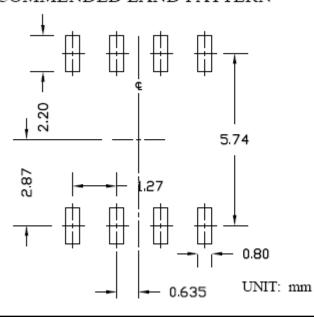
Diode Recovery Test Circuit & Waveforms







Package Outline


SOIC-8

RECOMMENDED LAND PATTERN

SYMBOLS	DIMENSIONS IN MILLIMETERS			
3 I MIDOLS	MIN	NOM	MAX	
A	1.35	1.65	1.75	
A1	0.10	0.15	0.25	
A2	1.25	1.50	1.65	
ь	0.31	0.41	0.51	
С	0.17	0.20	0.25	
D	4.80	4.90	5.00	
Е	3.80	3.90	4.00	
e	1.27 BSC			
E1	5.80	6.00	6.20	
h	0.25	0.30	0.50	
L	0.40	0.69	1.27	
θ	0°	4°	8°	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Super Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3