High Voltage, Low Noise, Inductorless EL Lamp Driver

Features

- No external components required when using an external EL clock frequency
- EL frequency can be set by an external resistor
- Low noise
- DC to AC converter
- Drives up to 5.0 nF load (approx. 1.5in ${ }^{2}$ lamp)
- Output voltage regulation
- Enable function
- EL Lamp dimming

Applications

- Cell phone keypads and displays
- Transceivers
- MP3 players
- Watches
- Pagers
- Measuring instruments/gauges

General Description

The Supertex HV850 is a high voltage electroluminescent (EL) Lamp Driver IC. It is designed to drive EL lamps of up to 1.5 in 2, with capacitive values up to 5.0 nF . The HV850 converts a low voltage $D C$ input to a high voltage $A C$ output across an EL lamp. It uses a charge pump scheme to boost the input voltage, eliminating the need for external inductors, diodes, and high voltage capacitors, components commonly found in conventional topologies.

The charge pump circuit discharges its energy into an EL lamp through a high voltage H -bridge. Once the voltage reaches its regulated limit, it is turned off to conserve power. The EL lamp is then discharged to ground and the H -bridge changes state to allow the charge pump to charge the EL lamp in the opposite direction.

The EL lamp frequency can be set either by an external resistor, R_{EL}, or by applying an external clock, where the clock frequency is divided by 128 to set the EL lamp frequency.

Typical Application Circuits (For $V_{D D}=3.4 \mathrm{~V}$ to 4.2 V only)

Ordering Information

Device	Package Options
	8-Lead MSOP
	3.00x3.00mm body
	1.10mm height (max)
	0.65mm pitch
HV850	HV850MG-G

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings
Parameter
Value
V_{DD}, supply voltage

Operating temperature	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power dissipation	300 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Configuration

8-Lead MSOP (MG)

 (top view)
Product Marking

Package may or may not include the following marks: Si or
8-Lead MSOP (MG)

Recommended Operating Conditions

Sym	Parameter	Min	Typ	Max	Units	Conditions
V_{DD}	Input voltage	3.0	-	4.2	V	---
f_{EL}	EL lamp frequency	50	-	500	Hz	---
$\mathrm{C}_{\text {LOAD }}$	EL lamp capacitance	0	-	5.0	nF	---
T_{A}	Operating temperature	-25	-	+85	${ }^{\circ} \mathrm{C}$	--

Electrical Characteristics (Unless otherwise specified $V_{D D}=3.5 V_{,} T_{A}=25^{\circ} \mathrm{C}$)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{I}_{\text {DDQ }}$	Quiescent current	-	-	150	nA	EN $=0 \mathrm{~V}$
V_{A} or V_{B}	Peak output voltage	63	70	77	V	No load.
$V_{A}-V_{B}$	Peak to peak output voltage	126	140	154	V	
$\mathrm{f}_{\text {EL }}$	EL lamp frequency	225	250	275	Hz	$\mathrm{R}_{\mathrm{EL}}=1.65 \mathrm{M} \Omega$ or $\mathrm{CLK}=32 \mathrm{kHz}$
I_{DD}	Operating current	-	-	16	mA	$\begin{aligned} & \text { See Figure } 1, \mathrm{~V}_{\mathrm{DD}}=3.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{EL}}=1.5 \mathrm{M} \Omega, \\ & \text { Load }=3.3 \mathrm{nF}+1.0 \mathrm{k} \Omega \end{aligned}$
V_{A} or V_{B}	Peak output voltage	54	-	74	V	
$V_{A}-V_{B}$	Peak to peak output voltage	108	-	148	V	
$\mathrm{f}_{\text {EL }}$	EL lamp frequency	250	294	338	Hz	
$\mathrm{t}_{\text {ROUT }}$	Output voltage rise time	1.5	-	-	ms	$\mathrm{f}_{\mathrm{EL}}=250 \mathrm{~Hz}, 1 \mathrm{in}^{2}$ lamp, 10 to 90% of final value

Logic Inputs (Unless otherwise specified $V_{D D}=3.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{V}_{\text {IL }}$	Input logic low voltage	0	-	0.5	V	---
$\mathrm{V}_{\text {IH }}$	Input logic high voltage	2.0	-	V_{DD}	V	---
I_{IL}	Input logic low current	-	-	1.0	$\mu \mathrm{~A}$	---
I_{IH}	Input logic high current	-	-	1.0	$\mu \mathrm{~A}$	---
$\mathrm{EN}_{\text {RISE }}$	Enable input rise time (for delay turn on)	0.01	-	10	ms	
$\mathrm{EN}_{\text {FALL }}$	Enable input fall time (for delay turn off)	10μ	-	5.0	s	
$\mathrm{C}_{\mathbb{I N}}$	Logic input capacitance	-	-	10	pF	---

Block Diagram

Figure 1: Typical Application Circuit (without Enable function)

Load	$\begin{aligned} & \mathbf{R}_{\mathrm{EL}} \\ & (\mathrm{M} \Omega) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{DD}} \\ & (\mathrm{~mA}) \end{aligned}$	Peak V_{A} (V)	$\begin{aligned} & f_{\mathrm{FE}} \\ & (\mathrm{~Hz}) \end{aligned}$
$3.3 \mathrm{nF}+1.0 \mathrm{k} \Omega$	1.5	3.0	8.9	53	294
		3.5	10.2	61	
		4.0	10.4	66	

Note: $C_{D D}=2.2 \mu F, 6.3 \mathrm{~V}$ low $E S R$

Typical Performance

Lamp Size (in²)	$\begin{aligned} & R_{E L} \\ & (M \Omega) \end{aligned}$	$V_{D D}$ (V)	$\begin{aligned} & \mathrm{I}_{\mathrm{DD}} \\ & (\mathrm{~mA}) \end{aligned}$	Peak V_{A} (V)	$\begin{aligned} & \mathbf{f}_{\mathrm{EL}} \\ & (\mathrm{~Hz}) \end{aligned}$	Brightness (cd/m²)
1.0	1.65	3.0	8.4	53	250	7.31
		3.5	9.4	62		10.35
		4.0	9.9	66		12.62
0.5	2.0	3.0	5.5	62	210	11.54
		3.5	5.3	68		14.33
		4.0	4.9	68		14.90
1.0	3.3	3.0	5.6	62	128	8.55
		3.5	5.4	67		10.29
		4.0	5.0	68		10.94
0.5	3.3	3.0	4.6	64	128	8.25
		3.5	4.1	68		9.62
		4.0	3.8	68		9.95
1.0	4.7	3.0	4.8	64	89	6.02
		3.5	4.4	68		7.5
		4.0	5.0	68		10.94

Typical Output Waveform

$$
V_{D D}=3.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{EL}}=250.0 \mathrm{~Hz} ; \text { Load }=3.3 \mathrm{nF}+1.0 \mathrm{k} \Omega ; \mathrm{I}_{\mathrm{DD}}=9.19 \mathrm{~mA}, \mathrm{CH} 120 \mathrm{~V} / \mathrm{div}, 1.0 \mathrm{mS} / \mathrm{div}
$$

Figure 2: Push Button Turn on with Delay Turn off (For $V_{D D}=3.4 \mathrm{~V}$ to 4.2 V only)

Figure 3: Independent Programmable Output Frequency (f_{EL}) (For $\mathrm{V}_{D D}=3.4 \mathrm{~V}$ to 4.2 V on/y)

EL Lamp Dimming Using PWM

EL lamp dimming can be achieved by applying a PWM signal to the ENABLE pin. The PWM signal duty cycle is proportional to the lamp brightness. This is done by pulse skipping the output pulses. The PWM frequency should be kept below the EL frequency but above 50 Hz to avoid flickering.

Figure 4: PWM Dimming Circuit (For $V_{D D}=3.4 \mathrm{~V}$ to 4.2 V only)

Pin Description

Pin \#	Pad	Description
1	VDD	Input supply voltage pin.
2	REL	An external resistor to VDD will set the EL lamp frequency. The EL lamp frequency is inversely proportional to the resistor value.
3	EN	Enable input pin. Logic high will turn the device ON. An external R-C circuit can be added for a delayed turn off. Logic low will turn the device OFF only for $\mathrm{V}_{\mathrm{DD}}=3.4 \mathrm{~V}$ to 4.2 V . For V_{DD} lower than 3.4 V , logic low will not turn the device OFF.
4	CLKIN	Logic input pin. An external logic clock applied to this pin can be used to set the EL lamp frequency (see Figure 3). This is useful for applications requiring the EL lamp to be synchronized to a system clock. Connect to ground when not in use.
5	CLKEN	Logic input pin. Logic high will cause the EL lamp frequency to be set by the CLKIN input. Logic low will cause the EL lamp frequency to be set by the external $R_{E L}$ resistor.
6	GND	IC ground pin.
7	VB	EL lamp driver output pin. The EL lamp is connected across VA and VB terminals.
8	VA	EL lamp driver output pin. The EL lamp is connected across VA and VB terminals.

8-Lead MSOP Package Outline (MG)

$3.00 \times 3.00 \mathrm{~mm}$ body, 1.10 mm height (max), 0.65 mm pitch

Top View

View B

View A-A

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	E	E1	e	L	L1	L2	θ	01
$\begin{aligned} & \text { Dimension } \\ & (\mathrm{mm}) \end{aligned}$	MIN	0.75*	0.00	0.75	0.22	2.80*	4.65*	2.80*	$\begin{aligned} & 0.65 \\ & \text { BSC } \end{aligned}$	0.40	$\begin{aligned} & 0.95 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	0.85	-	3.00	4.90	3.00		0.60			-	-
	MAX	1.10	0.15	0.95	0.38	3.20*	5.15*	3.20*		0.80			8°	15°

JEDEC Registration MO-187, Variation AA, Issue E, Dec. 2004.

* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.
Supertex Doc. \#: DSPD-8MSOPMG, Version H041309.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Display Drivers \& Controllers category:
Click to view products by Supertex manufacturer:
Other Similar products are found below :
ICB2FL01G HV5812PJ-G-M904 TW8813-LB2-GR TW8811-PC2-GR MAX1839EEP+ TW9907-TA1-GR LX27901IDW SSD2828QN4 ICB2FL01GXUMA2 DLP2000FQC PAD1000YFFR S1D13746F01A600 FIN324CMLX AD8387JSVZ DLPC6421ZPC HV852K7-G HV859K7-G HV857K7-G DIO2133CT14 S1D13506F00A200 S1D13L03F00A100-40 TW2836-BA1-GR SSD2829QL9 MAX749CSA+T MAX4820EUP+T ICL7135CAI+ ICL7135CMH+D ICL7137CMH+D MAX25221BATJ/V+ S1D13748B00B100 S1D13A05B00B200 MAX3738ETG+T MAX8722CEEG+ MAX749CPA+ MAX8785AETI+ ICL7135CQI+ HV518PJ-G-M903 HV5812P-G HV5812PJ-G HV7224PG-G HV853K7-G HV860K7-G HV6810WG-G HV823LG-G HV857MG-G HV833MG-G HV857LMG-G HV859MG-G FMS6363ACSX FMS6364AMTC14X

[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

