Low Noise, Dimmable EL Lamp Driver

Features

- Adjustable output regulation for dimming
- $220 \mathrm{~V}_{\mathrm{PP}}$ output voltage for higher brightness
- Single cell lithium ion compatible
- 150nA shutdown current
- Separately adjustable lamp and converter frequencies
- 3x3mm 12-Lead QFN package
- Split supply capability

Applications

- Mobile cellular phone keypads
- PDAs
- Handheld wireless communication products
- Global Positioning Systems (GPS)

General Description

The Supertex HV860 is a high voltage driver designed for driving Electroluminescent, (EL), lamps of up to 5 square inches. The input supply voltage range is from 2.5 to 4.5 V . The device uses a single inductor and a minimum number of passive components. Using the internal reference voltage, the regulated output voltage is at a nominal voltage of 110 V . The EL lamp will therefore see $\pm 110 \mathrm{~V}$. An enable pin, (EN), is available to turn the device on and off via a logic signal.

The HV860 has two internal oscillators, a switching MOSFET, and a high voltage EL lamp driver H -bridge. The frequency for the switching MOSFET is set by an external resistor connected between the RSW-Osc pin and the supply pin VDD. The EL lamp driver frequency is set by an external resistor connected between REL-Osc pin and VDD pin. An external inductor is connected between the LX and VDD pins or VIN for split supply applications. A 3.0nF capacitor is connected between CS and ground. The EL lamp is connected between VA and VB.

The switching MOSFET charges the external inductor and discharges it into the capacitor at CS. The voltage at CS will start to increase. Once the voltage at CS reaches a nominal value of 110 V , the switching MOSFET is turned OFF to conserve power. The outputs VA and VB are configured as an H bridge and are switching in opposite states to achieve $\pm 110 \mathrm{~V}$ across the EL lamp.

EL lamp dimming can be accomplished by changing the input voltage to the VREG pin. The VREG pin allows an external voltage source to control the VCS amplitude. The VCS voltage is approximately 87 times the voltage seen on VREG.

Typical Application Circuit

Ordering Information

	12-Lead QFN
Device	3.00x3.00mm body 0.80 mm height (max) 0.50 mm pitch
	HV860K7-G

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
V_{DD}, Supply voltage	-0.5 V to 6.0 V
Operating temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power dissipation:	1.6 W
$\mathrm{~V}_{\mathrm{CS}}$, Output voltage	-0.5 V to +120 V
$\mathrm{~V}_{\text {REG }}$ External input voltage	1.33 V

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

Note:
Pads are at the bottom of the package. Center heat slug is at ground potential.

Product Marking

H860	Y = Last Digit of Year Sealed W = Code for Week Sealed YWLL

Package may or may not include the following marks: Si or $\$ 7$
12-Lead QFN (K7)

Thermal Resistance

Package	$\boldsymbol{\theta}_{\text {ja }}$
12-Lead QFN (K7)	$60^{\circ} \mathrm{C} / \mathrm{W}$

Recommended Operating Conditions

Sym	Parameter	Min	Typ	Max	Units	Conditions
V_{DD}	Supply voltage	2.5	-	4.5	V	---
f_{SW}	Switching frequency	40	-	200	kHz	---
f_{EL}	EL output frequency	150	-	500	Hz	---
$\mathrm{C}_{\mathrm{LOAD}}$	EL lamp capacitance load	0	-	20	nF	---
T_{A}	Operating temperature	-40	-	+85	${ }^{\circ} \mathrm{C}$	---

Electrical Characteristics

(Over recommended operating conditions unless otherwise specified $T_{A}=25^{\circ} \mathrm{C}$)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	On-resistance of switching transistor	-	-	6.0	Ω	$\mathrm{I}=100 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CS}}$	Maximum output regulation voltage	90	-	120	V	$\mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 4.5 V

Electrical Characteristics (cont.)

Sym	Parameter	Min	Typ	Max	Units	Conditions
V_{cs}	Output regulation voltage	-	95	-	V	$\mathrm{V}_{\mathrm{DD}}=2.5$ to $4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REG}}=1.092 \mathrm{~V}$
		-	75	-		$\mathrm{V}_{\mathrm{DD}}=2.5$ to $4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REG}}=0.862 \mathrm{~V}$
		-	55	-		$\mathrm{V}_{\mathrm{DD}}=2.5$ to $4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REG}}=0.632 \mathrm{~V}$
$V_{\text {REG }}$	External input voltage range	0	-	1.33	V	$\mathrm{V}_{\mathrm{DD}}=2.5$ to 4.5 V
$\mathrm{V}_{\text {REFH }}$	$\mathrm{V}_{\text {REF }}$ output high voltage	1.18	1.26	1.33	V	$\mathrm{V}_{\mathrm{DD}}=2.5$ to 4.5 V
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent V_{DD} supply current	-	-	150	nA	EN = Low
$I_{\text {D }}$	Input current going into the VDD pin	-	-	250	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{EL}}=2.0 \mathrm{M} \Omega, \\ & \mathrm{R}_{\mathrm{SW}}=1.0 \mathrm{M} \Omega \end{aligned}$
I_{IN}	Input current including inductor current	-	16	30	mA	$\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}$. See Figure 1.
$\mathrm{I}_{\mathrm{INQ}}$	Quiescent $\mathrm{V}_{\text {IN }}$ supply current	-	-	200	nA	$\mathrm{V}_{\mathbb{I N}}=4.2 \mathrm{~V} . \mathrm{EN}=\text { Low. }$ See Figure 1.
f_{EL}	EL lamp frequency	160	200	240	Hz	$\mathrm{R}_{\mathrm{EL}}=2.0 \mathrm{M} \Omega$
$\mathrm{f}_{\text {sw }}$	Switching transistor frequency	76	90	104	kHz	$\mathrm{R}_{\mathrm{sw}}=1.0 \mathrm{M} \Omega$
D	Switching transistor duty cycle	-	-	88	\%	---
$\mathrm{V}_{\text {IH }}$	Enable input logic high voltage	1.5	-	V_{DD}	V	$\mathrm{V}_{\mathrm{DD}}=2.5$ to 4.5 V
$\mathrm{V}_{\text {IL }}$	Enable input logic low voltage	0	-	0.2	V	$\mathrm{V}_{\mathrm{DD}}=2.5$ to 4.5 V
I_{H}	Enable input logic high current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{1 H}=\mathrm{V}_{\mathrm{DD}}=2.5$ to 4.5 V
1 IL	Enable input logic low current	-	-	-1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.5$ to 4.5 V
$\mathrm{C}_{\text {IN }}$	Enable input capacitance	-	-	15	pF	---

Block Diagram

Figure 1: Typical Application / Test Circuit

Typical Performance

$\mathbf{V}_{\text {D }}$	Lamp Size	$\mathrm{V}_{\text {IN }}$	$\mathrm{I}_{\text {IN }}$	$V_{\text {cs }}$	f_{EL}	Brightness
3.0 V	$3.0 \mathrm{in}^{2}$	3.3 V	19.42 mA	110 V	194Hz	$20.32 \mathrm{~cd} / \mathrm{m}^{2}$
		3.7 V	17.95 mA			$21.40 \mathrm{~cd} / \mathrm{m}^{2}$
		4.2 V	16.02 mA			$21.81 \mathrm{~cd} / \mathrm{m}^{2}$

Typical Waveform on $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}$, and Differential Waveform $\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}$

Split Supply Configuration

The HV860 can also be used for handheld devices operating from a battery where a regulated voltage is available. This is shown in Figure 2. The regulated voltage can be used to run the internal logic of the HV860. The amount of current

Enable/Disable Configuration

The HV860 can be easily enabled and disabled via a logic control signal on the EN pin as shown in Figure 2. The control signal can be from a microprocessor. When the
necessary to run the internal logic is $250 \mu \mathrm{~A}$ max. Therefore, the regulated voltage could easily provide the current without being loaded down.

Figure 2: Split Supply and Enable/Disable Configuration

Audible Noise Reduction

The EL lamp, when lit, emits an audible noise. This is due to EL lamp construction. The audible noise generated by the EL lamp can be a major problem for applications where the EL lamp is held close to the ear, such as cellular phones.

The HV860 employs a proprietary circuit to help minimize the EL lamp's audible noise by using a single resistor, $\mathrm{R}_{\text {REG }}$, as shown in Figure 3.

Figure 3: Typical Application Circuit for Audible Noise Reduction

How to Minimize EL Lamp Audible Noise

The audible noise from the EL lamp can be minimized with the proper selection of $R_{\text {REG }} \cdot R_{\text {REG }}$ is connected between the VREF and VREG pins. VREG has an internal 60pF capacitor
to ground. EL lamp noise can be minimized without much loss in brightness by setting the RC time constant to be approximately $1 / 12$ of the EL frequency's period.

EL Lamp Dimming using PWM

This section describes the method of dimming the EL lamp. Reducing the voltage amplitude at the VREG pin will reduce the voltage on the CS pin, which will effectively reduce the peak to peak voltage the EL lamp sees. Figure 4 shows a circuit to dim the lamp by changing the duty cycle of a PWM signal. A $10 \mathrm{k} \Omega$ resistor is connected in series with a $3.3 \mathrm{M} \Omega$
resistor. An N-channel open drain PWM signal is used to pull the $10 \mathrm{k} \Omega$ resistor to ground. The effective voltage on the VREG pin will be proportional to the duty cycle of the PWM signal. The PWM operating frequency can be anywhere between 20 kHz to 100 kHz .

Figure 4: PWM Dimming Circuit

Pin Configuration and External Component Description

Pin \#	Name	Description
1	REL-Osc	External resistor from REL-Osc to VDD sets the EL frequency. The EL frequency is inversely proportional to the external $R_{\text {EL }}$ resistor value. Reducing the resistor value by a factor of two will result in increasing the EL frequency by two.
2	VREG	Input voltage to set $\mathrm{V}_{\text {cS }}$ regulation voltage. This pin allows an external voltage source to control the $\mathrm{V}_{\text {cs }}$ amplitude. EL lamp dimming can be accomplished by varying the input voltage at VREG. The $\mathrm{V}_{\text {CS }}$ voltage is approximately 87 times the voltage seen on VREG. External resistor $\mathrm{R}_{\text {REG }}$, connected between VREG and VREF pins controls the V_{CS} charging rate. The charging rate is inversely proportional to the $\mathrm{R}_{\text {REG }}$ resistor value.
3	VREF	Switched internal reference voltage.
4	GND	Device ground.
5	LX	Drain of internal switching MOSFET. Connection for an external inductor. The inductor L_{x} is used to boost the low input voltage by inductive flyback. When the internal switch is on, the inductor is being charged. When the internal switch is off, the charge stored in the inductor will be transferred to the high voltage capacitor C_{s}. The energy stored in the capacitor is transferred to the internal H-bridge, and therefore to the EL lamp. In general, smaller value inductors, which can handle more current, are more suitable to drive larger size lamps. As the inductor value decreases, the switching frequency of the inductor (controlled by $R_{s w}$) should be increased to avoid saturation. A $220 \mu \mathrm{H}$ Cooper (SD3814-221) inductor with 5.5Ω series DC resistance is typically recommended. For inductors with the same inductance value, but with lower series DC resistance, lower $R_{s w}$ resistor value is needed to prevent high current draw and inductor saturation.
6	NC	No internal connections to the device.
7	CS	High voltage regulated output. Connection for an external high voltage capacitor to ground
8	VB	V_{B} side of the EL lamp driver H -bridge. Connection for one of the EL lamp terminals.
9	VA	V_{A} side of the EL lamp driver H -bridge. Connection for one of the EL lamp terminals.
10	VDD	Low voltage input supply pin.
11	EN	Logic input pin. Logic high will enable the device. This pin has an $100 \mathrm{k} \Omega$ internal pull-down resistor connected to GND.
12	RSW-Osc	External resistor from RSW-Osc to VDD sets the switch converter frequency. The switch converter frequency is inversely proportional to the external $R_{s w}$ resistor value. Reducing the resistor value by a factor of two will result in increasing the switch converter frequency by two.

12-Lead QFN Package Outline (K7)

$3.00 \times 3.00 \mathrm{~mm}$ body, 0.80 mm height (max), 0.50 mm pitch

Top View

Side View

Bottom View

Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
2. Depending on the method of manufacturing, a maximum of 0.15 mm pullback $(\mathrm{L} 1)$ may be present.
3. The inner tip of the lead may be either rounded or square.

Symbol		A	A1	A3	b	D	D2	E	E2	e	L	L1	θ
Dimension (mm)	MIN	0.70	0.00	$\begin{aligned} & 0.20 \\ & \text { REF } \end{aligned}$	0.18	2.85*	1.25	2.85*	1.25	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.30	0.00	0°
	NOM	0.75	0.02		0.25	3.00	-	3.00	-		0.40	-	-
	MAX	0.80	0.05		0.30	3.15*	1.65	3.15*	1.65		0.50	0.15	14°

JEDEC Registration MO-220, Variation WEED-5, Issue K, June 2006.

* This dimension is not specified in the JEDEC drawing.

Drawings not to scale.

Supertex Doc. \#: DSPD-12QFNK73X3P050, Version B041309.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Display Drivers \& Controllers category:
Click to view products by Supertex manufacturer:
Other Similar products are found below :
ICB2FL01G HV5812PJ-G-M904 TW8813-LB2-GR TW8811-PC2-GR MAX1839EEP+ TW9907-TA1-GR LX27901IDW SSD2828QN4 ICB2FL01GXUMA2 DLP2000FQC PAD1000YFFR S1D13746F01A600 FIN324CMLX AD8387JSVZ DLPC6421ZPC HV852K7-G HV859K7-G HV857K7-G DIO2133CT14 S1D13506F00A200 S1D13L03F00A100-40 TW2836-BA1-GR SSD2829QL9 MAX749CSA+T MAX4820EUP+T ICL7135CAI+ ICL7135CMH+D ICL7137CMH+D MAX25221BATJ/V+ S1D13748B00B100 S1D13A05B00B200 MAX3738ETG+T MAX8722CEEG+ MAX749CPA+ MAX8785AETI+ ICL7135CQI+ HV518PJ-G-M903 HV5812P-G HV5812PJ-G HV7224PG-G HV853K7-G HV860K7-G HV6810WG-G HV823LG-G HV857MG-G HV833MG-G HV857LMG-G HV859MG-G FMS6363ACSX FMS6364AMTC14X

[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

