Programmable Current LED Lamp Driver IC with PWM Dimming

Features

- Programmable Output Current up to 50 mA
- Pulse-Width Modulation (PWM) Dimming/Enable
- Universal 85 VAC to 264 VAC Operation
- Fixed Off-Time Buck Converter
- Internal 475V Power MOSFET
- Overtemperature Protection with Hysteresis

Applications

- Decorative Lighting
- Low-Power Lighting Fixtures

General Description

The HV9925 is a pulse-width modulated high-efficiency LED driver control IC with PWM dimming capabilities. It allows efficient operation of high-brightness LED strings from voltage sources ranging up to 400 VDC. The HV9925 includes an internal high-voltage switching MOSFET controlled with a fixed off-time of approximately $10.5 \mu \mathrm{~s}$. The LED string is driven at constant current, thus providing constant light output and enhanced reliability. Selecting a current sense resistor value can externally program the output LED current of the HV9925.

The peak current control scheme provides good regulation of the output current throughout the universal AC line voltage range of 85 VAC to 264 VAC or DC input voltage of 20 V to 400 V . The HV9925 is designed with a built-in thermal shutdown to prevent excessive power dissipation in the IC.

Package Type

Heat slug (exposed thermal pad) is at ground potential. See Table 3-1 for pin information.

Functional Block Diagram

Typical Application Circuit

HV9925

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings \daggerDRAIN-to-Source Breakdown Voltage, $\mathrm{V}_{\mathrm{DS}(\mathrm{BR})}$$+475 \mathrm{~V}$
Supply Voltage, V_{DD}. -0.3 V to +10 V
PWMD, RSENSE Voltage -0.3 V to +10 V
Supply Current, IDD $+5 \mathrm{~mA}$
Junction Temperature, T_{J} $40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature, T_{S}. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation at $25^{\circ} \mathrm{C}$ (Note 1) 800 mW
\dagger Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.
Note 1: The power dissipation is given for the standard minimum pad for 8-lead SOIC package without a heat slug, and based on $R_{\theta J A}=125^{\circ} \mathrm{C} / \mathrm{W} . R_{\theta J A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the latter is determined by the user's board design. The junction-to-ambient thermal resistance is $R_{\theta J A}=105^{\circ} \mathrm{C} / \mathrm{W}$ when the part is mounted on a 0.04 -square-inch pad of 1 oz copper, and $R_{\theta J A}=60^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a one-square-inch pad of 1 oz copper.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: The specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {DRAIN }}=50 \mathrm{~V}$ unless otherwise noted.						
Parameter	Sym.	Min.	Typ.	Max.	Unit	Conditions
$\mathrm{V}_{\text {DD }}$ Regulator Output	$V_{\text {DD }}$	-	7.5	-	V	
$\mathrm{V}_{\text {DD }}$ Undervoltage Upper Threshold	$\mathrm{V}_{\text {UVLO,R }}$	4.8	-	-	V	V_{DD} Rising
V_{DD} Undervoltage Lockout Hysteresis	$\Delta \mathrm{V}_{\text {UVLO }}$	-	200	-	mV	
Operating Supply Current	I_{DD}	-	300	500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}(\mathrm{EXT})}=8.5 \mathrm{~V}$
Output (DRAIN)						
$V_{\text {DRAIN }}$ Supply Voltage	$\mathrm{V}_{\text {DRAIN }}$	20	-	400	V	
On-Resistance	R_{ON}	-	100	200	Ω	$\mathrm{I}_{\text {DRAIN }}=50 \mathrm{~mA}$
Output Capacitance	$\mathrm{C}_{\text {DRAIN }}$	-	1	5	pF	$\mathrm{V}_{\text {DRAIN }}=400 \mathrm{~V}$ (Note 2)
DRAIN Saturation Current	$\mathrm{I}_{\text {SAT }}$	100	150	-	mA	
CURRENT SENSE COMPARATOR						
Threshold Voltage	$\mathrm{V}_{\text {TH }}$	0.435	0.47	0.525	V	
Leading Edge Blanking Delay	T BLANK	200	300	400	ns	Note 2
Minimum On-Time	$\mathrm{T}_{\mathrm{ON}(\mathrm{MIN})}$	-	-	650	ns	
OFF-TIME GENERATOR						
Off-Time	T OFF	8	10.5	13	$\mu \mathrm{s}$	
PWM DIMMING						
PWMD Input High Voltage	$\mathrm{V}_{\text {PWMD,HI }}$	2	-	-	V	
PWMD Input Low Voltage	$\mathrm{V}_{\text {PWMD,LO }}$	-	-	0.8	V	
PWMD Pull-Down Resistance	$\mathrm{R}_{\text {PWMD }}$	100	200	300	$\mathrm{k} \Omega$	$\mathrm{V}_{\text {PWMD }}=5 \mathrm{~V}$
THERMAL SHUTDOWN						
Overtemperature Trip Limit	T_{OT}	-	140	-	${ }^{\circ} \mathrm{C}$	Note 2
Temperature Hysteresis	T OthYs	-	60	-	${ }^{\circ} \mathrm{C}$	Note 2

Note 1: Denotes the specifications which apply over the full operating ambient temperature range of $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$.
2: Denotes guarantee by design.

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Typ.	Max.	Unit	Conditions
TEMPERATURE RANGE						
Operating Ambient Temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$	
Operating Junction Temperature	T_{J}	-40	-	+125	${ }^{\circ} \mathrm{C}$	
Storage Temperature	T_{S}	-65	-	+150	${ }^{\circ} \mathrm{C}$	
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}(\mathrm{ABSMAX})}$	-	-	+150	${ }^{\circ} \mathrm{C}$	
PACKAGE THERMAL RESISTANCE						
8-lead SOIC with Heat Slug	θ_{JA}	-	84	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Note 1
8-lead SOIC with Heat Slug	θ_{JA}	-	125	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Note 2
8-lead SOIC with Heat Slug	θ_{JA}	-	105	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Note 3
8-lead SOIC with Heat Slug	θ_{JA}	-	60	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Note 4

Note 1: Mounted on JEDEC $2 s 2 p$ test PCB.
2: Mounted on standard minimum pad.
3: Mounted on a 0.04 square inch pad of 1 oz copper.
4: Mounted on a 1 square inch pad of 1 oz copper.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g. outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Threshold Voltage $V_{T H}$ vs. Junction Temperature T_{J}.

FIGURE 2-2: Off-Time $T_{\text {OFF }}$ vs. Junction Temperature T_{J}.

FIGURE 2-3: DRAIN Breakdown Voltage $V_{B R}$ vs. Junction Temperature T_{J}.

FIGURE 2-4: \quad ON Resistance $R_{O N}$ vs. Junction Temperature T_{J}.

FIGURE 2-5: DRAIN Capacitance $C_{\text {DRAIN }}$ vs. $V_{\text {DRAIN. }}$.

FIGURE 2-6: Output Characteristics
$I_{\text {DRAIN }}$ vs $V_{\text {DRAIN }}$.

3.0 PIN DESCRIPTION

The details on the pins of HV9925 are listed in Table 3-1. Refer to Package Type for the location of pins.

TABLE 3-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	RSENSE	Source terminal of the output switching MOSFET provided for current sense resistor connection
2	GND	Common connection for all circuits
3	PWMD	PWM Dimming input to the IC
4	VDD	Power supply pin for internal control circuits. Bypass this pin with a 0.1μ F low-impedance capacitor.
5	NC	No connection
6	DRAIN	Drain terminal of the output switching MOSFET and a linear regulator input
7	GND	Exposed backside pad. It must be connected to pin 2 and GND plane on PCB to maxi- mize thermal performance of the package.
8		

HV9925

4.0 FUNCTIONAL DESCRIPTION

The HV9925 is a PWM peak current control IC for driving a buck converter topology in Continuous Conduction Mode (CCM). The HV9925 controls the output current (rather than output voltage) of the converter that can be programmed by a single external resistor ($\mathrm{R}_{\text {SENSE }}$) for driving a string of light-emitting diodes (LEDs). An external enable input (PWMD) that can be used for PWM dimming of an LED string is provided. The typical rising and falling edge transitions of the LED current when using the PWM dimming feature of the HV9925 are shown in Figure 5-6 and Figure 5-7.

When the input voltage of 20 V to 400 V appears at the DRAIN pin, the internal linear regulator attempts to maintain a voltage of 7.5 VDC at the V_{DD} pin. Until this voltage exceeds the internally programmed undervoltage upper threshold, no output switching occurs. When the threshold is exceeded, the integrated high-voltage switch turns on, pulling the DRAIN Iow. A 200 mV hysteresis is incorporated with the undervoltage comparator to prevent oscillation.

When the voltage at RSENSE exceeds 0.47 V , the switch turns off and the DRAIN output becomes high impedance. At the same time, a one-shot circuit that determines the off-time of the switch ($10.5 \mu \mathrm{~s}$ typical) is activated.

A "blanking" delay of 300 ns is provided upon the turn-on of the switch that prevents false triggering of the current sense comparator due to leading edge spike caused by circuit parasitics.

5.0 APPLICATION INFORMATION

5.1 Selecting L1 and D1

The required value of L 1 is inversely proportional to the ripple current $\Delta \mathrm{l}_{\mathrm{O}}$ in it. Setting the relative peak-to-peak ripple current to $20 \%-30 \%$ of average output current in the LED string is a good practice to ensure noise immunity of the current sense comparator. See Equation 5-1.

EQUATION 5-1:

$$
L 1=\frac{\left(V_{O} \times T_{O F F}\right)}{\Delta I_{O}}
$$

Where:
$\mathrm{V}_{\mathrm{O}}=$ Forward voltage of the LED string
TOFF $=$ Off-time of the HV9925
$\Delta \mathrm{l}_{\mathrm{O}}=$ Peak-to-peak ripple current in the LED string

The output current in the LED string can be calculated as illustrated in Equation 5-2.

EQUATION 5-2:

$$
I_{O}=\left(\frac{V_{T H}}{R_{S E N S E}}\right)-\left(\frac{\Delta I_{O}}{2}\right)
$$

Where:
$\mathrm{V}_{\mathrm{TH}}=$ Current sense comparator threshold
$\mathrm{R}_{\text {SENSE }}=$ Current sense resistor

The ripple current introduces a peak-to-average error in the output current setting that needs to be accounted for. Due to the constant off-time control technique used in the HV9925, the ripple current is nearly independent of the input AC or DC voltage variation. Therefore, the output current will remain unaffected by the varying input voltage.
Adding a filter capacitor across the LED string can reduce the output current ripple even further, thus permitting a reduced value of L1. However, one must keep in mind that the peak-to-average current error is affected by the variation of $\mathrm{T}_{\text {OFF }}$. Therefore, the initial output current accuracy might be sacrificed at large ripple current in L1.
Another important aspect of designing an LED driver with HV9925 is related to certain parasitic elements of the circuit, including distributed coil capacitance of L1, junction capacitance C_{J} and reverse recovery time $t_{r r}$ of the rectifier diode D1, capacitance of the printed circuit board traces $\mathrm{C}_{\text {PCB }}$ and output capacitance $\mathrm{C}_{\text {DRAIN }}$ of the controller itself. These parasitic elements affect the efficiency of the switching converter and could potentially cause false triggering of the current sense
comparator if not properly managed. Minimizing these parasitics is essential for efficient and reliable operation of HV9925.
Coil capacitance of inductors is typically provided in the manufacturer's data books either directly or in terms of the self-resonant frequency (SRF). Refer to Equation 5-3.

EQUATION 5-3:

$$
S R F=\frac{1}{\left(2 \Pi \sqrt{\left(L \times C_{L}\right)}\right)}
$$

Where:
L = Inductance value
$C_{L}=$ Coil capacitance
Charging and discharging this capacitance every switching cycle causes high-current spikes in the LED string. Therefore, connecting a small capacitor C_{O} ($\sim 10 \mathrm{nF}$) is recommended to bypass these spikes.
Using an ultra-fast rectifier diode for D1 is recommended to achieve high efficiency and reduce the risk of false triggering of the current sense comparator. Using diodes with shorter reverse recovery time $t_{\text {rr }}$ and lower junction capacitance C_{J} achieves better performance. The reverse voltage rating V_{R} of the diode must be greater than the maximum input voltage of the LED lamp.
The total parasitic capacitance present at the DRAIN output of the HV9925 can be calculated as shown in Equation 5-4.

EQUATION 5-4:

$$
C_{P}=C_{D R A I N}+C_{P C B}+C_{L}+C_{J}
$$

When the switch turns on, the capacitance C_{P} is discharged into the DRAIN output of the IC. The discharge current is typically limited to about 150 mA . However, it may become lower at increased junction temperature. The duration of the leading edge current spike can be estimated as show in Equation 5-5.

EQUATION 5-5:

$$
T_{S P I K E}=\left(\frac{V_{I N} \times C_{P}}{I_{S A T}}\right)+t_{r r}
$$

To avoid false triggering of the current sense comparator, C_{P} must be minimized in accordance with Equation 5-6.

EQUATION 5-6:

$$
C_{P}<\frac{I_{S A T} \times\left(T_{B L A N K(M I N)}-t_{r r}\right)}{V_{I N(M A X)}}
$$

Where:
$\mathrm{T}_{\mathrm{BLANK}(\mathrm{MIN})}=$ Minimum blanking time of 200 ns
$\mathrm{V}_{\mathrm{IN}(\mathrm{MAX})}=$ Maximum instantaneous input voltage

The typical DRAIN and RSENSE voltage waveforms are shown in Figure 5-4 and Figure 5-5.

5.2 Estimating Power Loss

Discharging the parasitic capacitance C_{P} into the DRAIN output of the HV9925 is responsible for the bulk of the switching power loss. It can be estimated using Equation 5-7.

EQUATION 5-7:

$$
P_{S W I T C H}=\left(\frac{C_{P} \times V_{I N^{2}}}{2}+V_{I N} \times I_{S A T} \times t_{r r}\right) \times F_{S}
$$

Where:
$\mathrm{F}_{\mathrm{S}}=$ Switching frequency
$I_{\text {SAT }}=$ Saturated DRAIN current
Disregarding the voltage drop at HV9925 and D1, the switching frequency is derived using Equation 5-8.

EQUATION 5-8:

$$
F_{S}=\frac{V_{I N}-V_{O}}{V_{I N} \times T_{O F F}}
$$

When the HV9925 LED driver is powered from the full-wave rectified AC input, the switching power loss can be estimated as illustrated in Equation 5-9.

EQUATION 5-9:

$P_{\text {SWITCH }} \approx \frac{1}{2 \times T_{\text {OFF }}}\left(V_{A C} \times C_{P}+21_{S A T} \times t_{r r}\right)\left(V_{A C}-V_{O}\right)$
$V_{A C}$ is the input $A C$ line RMS voltage.
The switching power loss associated with turn-off transitions of the DRAIN output can be disregarded. Due to the large amount of parasitic capacitance connected to this switching node, the turn-off transition occurs essentially at zero voltage.
When the HV9925 LED driver is powered from DC input voltages, the conduction power loss can be calculated using the following equation: Equation 5-10.

EQUATION 5-10:

$$
P_{C O N D}=\left(D \times I_{O}^{2} \times R_{O N}\right)+I_{D D} \times V_{I N} \times(1-D)
$$

Where:

$$
D=V_{O} / V_{\text {IN }} \text { is the duty ratio }
$$

$\mathrm{R}_{\mathrm{ON}}=$ On resistance of internal MOSFET switch
$I_{D D}=$ Internal linear regulator current
When the LED driver is powered from the full-wave rectified AC line input, the exact equation for calculating the conduction loss is more complicated. However, it can be estimated using the following equation.

EQUATION 5-11:

$$
P_{C O N D}=\left(K_{C} \times I_{O}^{2} \times R_{O N}\right)+\left(K_{D} \times I_{D D} \times V_{A C}\right)
$$

Where $V_{A C}$ is the input $A C$ line voltage. The coefficients K_{C} and K_{D} can be determined from the minimum duty ratio $\mathrm{D}_{\mathrm{M}}=0.71 \mathrm{~V}_{\mathrm{O}} /\left(\mathrm{V}_{\mathrm{AC}}\right)$.

FIGURE 5-1: Conduction Loss
Coefficients K_{C} and K_{D}.

5.3 EMI Filter

As with all off-line converters, selecting an input filter is critical to obtaining good EMI. A switching side capacitor, albeit of small value, is necessary in order to ensure low impedance to the high frequency switching currents of the converter. As a rule of thumb, this capacitor should be approximately $0.1 \mu \mathrm{~F} / \mathrm{W}$ to $0.2 \mu \mathrm{~F} / \mathrm{W}$ of LED output power. A recommended input filter is shown in Figure 5-2 for the following design example:

5.4 Design Example 1

Let us design an HV9925 LED lamp driver meeting the following specifications:
Input: Universal AC, 85-264 VAC
Output Current: 20 mA
Load: String of 10 LED
($\mathrm{V}_{\mathrm{F}}=4.1 \mathrm{~V}$, maximum each)
The schematic diagram of the LED driver is shown in Figure 5-2.

5.4.1 STEP 1: CALCULATE L1

The output voltage $\mathrm{V}_{\mathrm{O}}=10 \times \mathrm{V}_{\mathrm{F}} \approx 41 \mathrm{~V}$ (maximum). Use Equation 5-1 assuming a 30\% peak-to-peak ripple current relative to average output current in the LED string. See Equation 5-12.

EQUATION 5-12:

$$
L 1=\frac{(41 V \times 10.5 \mu s)}{(0.3 \times 20 \mathrm{~mA})}=72 \mathrm{mH}
$$

Select L1 $=68 \mathrm{mH}$ I $=30 \mathrm{~mA}$. Typical SRF $=170 \mathrm{kHz}$. Calculate the coil capacitance. Refer to Equation 5-13.

EQUATION 5-13:

$$
C_{L}=\frac{1}{L 1 \times(2 \Pi \times S R F)^{2}}=\frac{1}{68 m H \times(2 \Pi \times 170 \mathrm{kHz})^{2}} \approx 13 p F
$$

5.4.2 STEP 2: SELECT D1

Usually the reverse recovery characteristics of ultra-fast rectifiers at $I_{F}=20 \mathrm{~mA}$ to 50 mA are not provided in the manufacturer's data books. The designer may need to experiment with different diodes to achieve the best result.
Select D1 with $\mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}, \mathrm{t}_{\mathrm{rr}} \approx 20 \mathrm{~ns}$, $\left(\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{RR}}\right.$ $=100 \mathrm{~mA})$ and $\mathrm{C}_{\mathrm{J}} \approx 8 \mathrm{pF}\left(\mathrm{V}_{\mathrm{F}}>50 \mathrm{~V}\right)$.

5.4.3 STEP 3: CALCULATE TOTAL PARASITIC CAPACITANCE

Using Equation 5-4, $\mathrm{C}_{\text {DRAIN }}=5 \mathrm{pF}$ (maximum), PCB traces capacitance $\mathrm{C}_{\mathrm{PCB}}=5 \mathrm{pF}$ (typical), and the above derived C_{L} and C_{J} values, the total parasitic capacitance is calculated in Equation 5-14.

EQUATION 5-14:

$$
C_{P}=5 p F+5 p F+13 p F+8 p F=31 p F
$$

5.4.4 STEP 4. CALCULATE THE LEADING EDGE SPIKE DURATION

Use Equation 5-5 and Equation 5-6, and take DRAIN saturation current $I_{\text {SAT }}=100 \mathrm{~mA}$ (minimum) and $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{AC}(\mathrm{MAX})}=264 \mathrm{~V}$. The leading edge spike duration is computed from Equation 5-15.

EQUATION 5-15:
$T_{\text {SPIKE }}=\frac{264 V \times \sqrt{2} \times 31 p F}{100 \mathrm{~mA}}+20 n s \approx 136 n s<T_{\text {BLANK }(M I N)}$

5.4.5 STEP 5: ESTIMATE THE POWER DISSIPATION IN HV9925 AT 264 VAC

Use Equation 5-9 and Equation 5-11 to calculate the power dissipation.

1. Switching Power Loss (See Equation 5-16.)

EQUATION 5-16:

$P_{\text {SWITCH }} \approx \frac{1}{2 \times 10.5 \mu s}(264 \mathrm{~V} \times 31 \mathrm{pF}+2 \times 100 \mathrm{~mA} \times 20 \mathrm{~ns})(264 \mathrm{~V}-41 \mathrm{~V})$
$P_{\text {SWITCH }} \approx 130 \mathrm{~mW}$
2. Minimum Duty Ratio (See Equation 5-17.)

EQUATION 5-17:

$$
D_{M}=\frac{(0.71 \times 41 V)}{264 V} \approx 0.11
$$

3. Conduction Power Loss (See Equation 5-18.) $\mathrm{K}_{\mathrm{C}}=0.2$ and $\mathrm{K}_{\mathrm{D}}=0.63$ for $\mathrm{D}_{\mathrm{M}}=0.11$ from the conduction loss coefficient curves in Figure 5-1.

EQUATION 5-18:

$$
P_{C O N D}=0.20 \times(20 \mathrm{~mA})^{2} \times 200 \Omega+0.63 \times 200 \mu A \times 264 V \approx 50 \mathrm{~mW}
$$

4. Total Power Dissipation at $\mathrm{V}_{\mathrm{AC}}(\mathrm{MAX})$ (See Equation 5-19.)

EQUATION 5-19:

$$
P_{D(T O T A L)}=P_{C O N D}+P_{\text {SWITCH }}=130 \mathrm{~mW}+50 \mathrm{~mW}=180 \mathrm{~mW}
$$

5.4.6 STEP 6: SELECT INPUT CAPACITOR C_{IN}

The output power is calculated with Equation 5-20.

EQUATION 5-20:

$$
P_{\text {OUT }}=41 \mathrm{~V} \times 20 \mathrm{~mA}=820 \mathrm{~mW}
$$

Select $0.1 \mu \mathrm{~F}, 400 \mathrm{~V}$ metalized polyester film capacitor as C_{IN}.

5.5 Design Example 2

Let us now design a PWM-dimmable LED lamp driver using the HV9925:
Input: Universal AC, 85VAC to 135 VAC
Output Current: 50 mA
Load: String of 12 LED ($V_{F}=2.5 \mathrm{~V}$ maximum each)
The schematic diagram of the LED driver is shown in Figure 5-3. We will use an aluminum electrolytic capacitor for C_{IN} to prevent interruptions of the LED current at zero crossings of the input voltage. As a rule of thumb, $2 \mu \mathrm{~F}$ to $3 \mu \mathrm{~F}$ per each watt of the input power is required for $\mathrm{C}_{\text {IN }}$ in this case.

5.5.1 STEP 1: CALCULATE L1.

The output voltage $\mathrm{V}_{\mathrm{O}}=12 \times \mathrm{V}_{\mathrm{F}}=30 \mathrm{~V}$ (maximum). Use Equation 5-1 assuming a 30\% peak-to-peak ripple current relative to average output current in the LED string. See Equation 5-21.

EQUATION 5-21:

$$
L 1=\frac{(30 \mathrm{~V} \times 10.5 \mu \mathrm{~s})}{(0.3 \times 50 \mathrm{~mA})}=21 \mathrm{mH}
$$

Select L1 $=22 \mathrm{mH}, \mathrm{I}=60 \mathrm{~mA}$. Typical SRF $=270 \mathrm{kHz}$. Calculate the coil capacitance. See Equation 5-22.

EQUATION 5-22:

$$
C_{L}=\frac{1}{L 1 \times(2 \Pi \times S R F)^{2}}=\frac{1}{22 m H \times(2 \Pi \times 270 \mathrm{KHz})^{2}} \approx 15 \mathrm{pF}
$$

5.5.2 STEP 2: SELECT D1

Select D1 with $V_{R}=400 \mathrm{~V}, \mathrm{t}_{\mathrm{rr}} \approx 35 \mathrm{~ns}$ and $\mathrm{C}_{\mathrm{J}} \leq 8 \mathrm{pF}$.

5.5.3 STEP 3: CALCULATE THE TOTAL PARASITIC CAPACITANCE

Use Equation 5-4. Take $C_{\text {DRAIN }}=5 \mathrm{pF}$ (maximum), $C_{P C B}=5 \mathrm{pF}$ (typical), and the above derived C_{L} and C_{J} values. The total parasitic capacitance is calculated from Equation 5-23.

EQUATION 5-23:

$$
C_{P}=5 p F+5 p F+15 p F+8 p F=33 p F
$$

5.5.4 STEP 4: CALCULATE THE LEADING EDGE SPIKE DURATION

Use Equation 5-5 and Equation 5-6, and take $\mathrm{I}_{\mathrm{SAT}}=100 \mathrm{~mA}$ (minimum) and $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{AC}(\mathrm{MAX})}=135 \mathrm{~V}$. The leading edge spike duration is computed from Equation 5-24.

EQUATION 5-24:

$$
T_{S P I K E}=\frac{135 V \times \sqrt{2} \times 33 p F}{100 \mathrm{~mA}}+35 n s \approx 98 n s<T_{B L A N K(M I N)}
$$

5.5.5 STEP 5: ESTIMATE THE POWER

 DISSIPATION IN HV9925 AT 135 VACPerform the estimation using Equation 5-7, Equation 5-8, and Equation 5-11.

1. Switching Power Loss (See Equation 5-25 and Equation 5-26)

EQUATION 5-25:

$$
F_{s}=\frac{135 \mathrm{~V}-30 \mathrm{~V}}{135 \mathrm{~V} \times 10.5 \mu \mathrm{~s}}=74 \mathrm{kHz}
$$

EQUATION 5-26:

$P_{\text {SWITCH }}=\frac{\left(33 \mathrm{pF} \times(135 \mathrm{~V})^{2}+135 \mathrm{~V} \times 2 \times 100 \mathrm{~mA} \times 35 \mathrm{~ns}\right)}{2} \times 74 \mathrm{kHz}$

$$
P_{\text {SWITCH }} \approx 57 \mathrm{~mW}
$$

2. Minimum Duty Ratio (See Equation 5-27.)

EQUATION 5-27:

$$
D_{M}=\frac{30 \mathrm{~V}}{(135 \times \sqrt{2})} \approx 0.16
$$

3. Conduction Power Loss (See Equation 5-28.)
$K_{C}=0.25$ and $K_{D}=0.62$ for $D_{M}=0.16$ from the conduction loss coefficient curves in Figure 5-1.

EQUATION 5-28:

$$
\begin{aligned}
P_{C O N D} & =0.25 \times(50 \mathrm{~mA})^{2} \times 200 \Omega+0.62 \times 0.5 \mathrm{~mA} \times 135 \mathrm{~V} \\
P_{C O N D} & =167 \mathrm{~mW}
\end{aligned}
$$

4. Total Power Dissipation in HV9925 (See Equation 5-29.)

EQUATION 5-29:

$P_{D(\text { TOTAL })}=57 \mathrm{~mW}+167 \mathrm{~mW}=224 \mathrm{~mW}$

5.5.6
 STEP 6: SELECT INPUT CAPACITOR C_{IN}

The output power is calculated from Equation 5-30.
EQUATION 5-30:
\square
Select $3.3 \mu \mathrm{~F}, 250 \mathrm{~V}$ aluminum electrolytic capacitor as C_{IN}.

FIGURE 5-2: Universal 85 VAC to 264 VAC LED Lamp Driver. $\left(I_{O}=20 \mathrm{~mA}, V_{O}=41 \mathrm{~V}\right.$ from Example 1)

FIGURE 5-3:
85 VAC to 135 VAC LED Lamp Driver with PWM Dimming. ($I_{O}=50 \mathrm{~mA}, V_{O}=30 \mathrm{~V}$
from Example 2)

FIGURE 5-4: Switching Waveforms.
CH1: VRSENSE, CH2: V

FIGURE 5-5: Switch-On
Transition-Leading Edge Spike. CH1: VRSENSE, CH2: $V_{\text {DRAIN. }}$

FIGURE 5-6: PWM Dimming-Rising Edge. CH4: $10 \times I_{\text {OUT }}$.

FIGURE 5-7: PWM Dimming-Falling Edge. CH4: $10 \times I_{\text {OUT }}$.

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

8-lead SOIC

Example

Legend: $X X \ldots$...X Product Code or Customer-specific information
$Y \quad$ Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
e3) Pb-free JEDEC ${ }^{\circledR}$ designator for Matte Tin (Sn)

* This package is Pb -free. The Pb -free JEDEC designator (e3)
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

8-Lead SOIC (Narrow Body w/Heat Slug) Package Outline (SG) $4.90 \times 3.90 \mathrm{~mm}$ body, 1.70 mm height (max), 1.27 mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Note:

1. If optional chamfer feature is not present, a Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/ identifier; an embedded metal marker; or a printed indicator

Symbol		A	A1	A2	b	D	D1	E	E1	E2	e	h	L	L1	L2	θ	01
Dimension (mm)	MIN	1.25*	0.00	1.25	0.31	4.80*	$3.30{ }^{+}$	5.80*	3.80*	$2.29{ }^{+}$	$\begin{aligned} & 1.27 \\ & \text { BSC } \end{aligned}$	0.25	0.40	$\begin{aligned} & 1.04 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	50
	NOM	-	-	-	-	4.90	-	6.00	3.90	-		-	-			-	-
	MAX	1.70	0.15	1.55*	0.51	5.00*	$3.81{ }^{+}$	6.20*	4.00*	2.79^{+}		0.50	1.27			8°	15°

JEDEC Registration MS-012, Variation BA, Issue E, Sept. 2005.

* This dimension is not specified in the JEDEC drawing.
\dagger This dimension differs from the JEDEC drawing.
Drawings not to scale.

APPENDIX A: REVISION HISTORY

Revision A (December 2019)

- Converted Supertex Doc\# DSFP-HV9925 to Microchip
- Updated the quantity of the 8-lead SOIC (with heat slug) SG package from 2500/Reel to $3300 /$ Reel to align it with the actual BQM
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2019, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-5410-6

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Microchip

Worldwide Sales and Service

AMERICAS
 Corporate Office
 2355 West Chandler Blvd.
 Chandler, AZ 85224-6199
 Tel: 480-792-7200
 Fax: 480-792-7277
 Technical Support:
 http://www.microchip.com/ support
 Web Address:
 www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880-3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by Supertex manufacturer:
Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 MX877RTR ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 AP5726FDCG-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR ZXLD1374QESTTC MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 MPQ7220GF-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ4425BGJ-AEC1-Z IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUAC-TR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 BD9416FS-E2 LYT4227E LYT6079C-TL MP3394SGF-P MP4689AGN-P

