TAIWAN
SEMICONDUCTOR

General Description

TS34063 is a monolithic switching regulator and subsystem intended for use as DC to DC converter. It contains an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active peak current limit circuit, drive and a high current output switch. The TS34063 is specifically designed to be incorporated in step-up, step-down and voltage inverting converter applications. TS34063 is offered in SOP-8 and DIP-8 package

Features

- Power forward control circuit
- Operating voltage from 3 V to 40 V
- Low standby current
- Current limit adjustable
- Output switch current up to 1.5A
- Variable oscillator frequency up to 100 kHz (max.)
- Output voltage adjustable

Applications

- Charger
- xD-ROM, xDSL products
- DC to DC converter

Pin Description

Name	Description
SC	Switch Collector
SE	Switch Emitter
CT	Timing Capacitor
GND	Ground
COMP.	Comparator Inverting Input
V_{CC}	V $_{\text {CC }}$ Collector
$\mathrm{I}_{\text {PK }}$	IPK Sense
$\mathrm{V}_{\text {DRIVER }}$	Driver

Ordering Information

Part No.	Package	Packing
TS34063CD C3	DIP-8	$50 \mathrm{pcs} /$ Tube
TS34063CS RL	SOP-8	2.5 Kpcs / 13" Reel

Absolute Maximum Rating

Parameter		Symbol	Maximum	Unit
Supply Voltage		$V_{C C}$	40	V
Comparator Input Voltage Range		$\mathrm{V}_{\text {FB }}$	$-0.3 \sim 40$	V
Switch Collector Output Voltage		$\mathrm{V}_{\mathrm{C} \text { (SW) }}$	40	V
Switch Emitter Voltage		$\mathrm{V}_{\text {E(SW) }}$	40	V
Switch Collector to Emitter Voltage		$\mathrm{V}_{\text {CEISW }}$	40	V
Driver Collector Voltage		$\mathrm{V}_{\text {C(DRIVER) }}$	40	V
Driver Collector Current (note 1)		$\mathrm{I}_{\text {(DRIIVER) }}$	100	mA
Output Switching Current		Isw	1.5	A
Power Dissipation	DIP-8	P_{D}	1.0	W
	SOP-8		0.5	
Operating Ambient Temperature Range		$\mathrm{T}_{\text {OPR }}$	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Junction Temperature Range		T_{J}	$0 \sim+125$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		$\mathrm{T}_{\text {STG }}$	$-65 \sim+150$	${ }^{\circ} \mathrm{C}$

Note: Maximum package power dissipation limits must be observed

TAIWAN
SEMICONDUCTOR
RoHS
Dc to Dc Converter Controller

Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$; unless otherwise noted.)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Oscillator (OSC)						
Frequency	Fosc	$\mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{V}$ pin5 $=0 \mathrm{~V}$	24	33	42	KHz
Charge Current	$\mathrm{I}_{\text {CHARGE }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \sim 40 \mathrm{~V}$	24	30	42	uA
Discharge Current	Itischarge	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V} \sim 40 \mathrm{~V}$	140	200	260	uA
Discharge to Charge current ratio	I Discharge / I Charge	Pin7 to V ${ }_{\text {cc }}$	5.2	6.5	7.5	--
Current Limit Sense Voltage	$\mathrm{V}_{\text {IPK(SENSE) }}$	$\mathrm{I}_{\text {IISCHARGE }}=\mathrm{I}_{\text {CHARGE }}$	250	--	350	mV
Output switch (note1)						
Saturation Voltage	$\mathrm{V}_{\text {CE(SAT }}$	$\mathrm{I}_{\mathrm{sw}}=1 \mathrm{~A}$, pin1, 8 connected	--	1.0	1.3	V
Saturation Voltage	$\mathrm{V}_{\text {CEISAT }}$	$\mathrm{I}_{\mathrm{sw}}=1 \mathrm{~A}, \mathrm{Id}=50 \mathrm{~mA}$	--	0.45	0.7	V
DC current gain	$\mathrm{H}_{\text {FE }}$	$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{~V}$	50	75	--	--
Collector off-state current	$\mathrm{I}_{\text {(OFF) }}$	$\mathrm{V}_{\text {CE }}=40 \mathrm{~V}$	--	0.01	100	uA
Comparator						
Threshold Voltage	$V_{\text {REF }}$		1.225	1.25	1.275	V
Line regulation	REGLINE	$\mathrm{V}_{\text {CC }}=3 \mathrm{~V} \sim 40 \mathrm{~V}$	--	--	6	mV
Total device						
Supply Current	$I_{\text {cc }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \sim 40 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \\ & \text { pin7 }=\mathrm{V}_{\mathrm{CC}}, \text { pin5 } 5 \mathrm{~V}_{\mathrm{TH}}, \\ & \text { pin2=Gnd, remaining pins } \\ & \text { open } \end{aligned}$	--	3	5	mA

Notes1: Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible
Note 2: If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents $(<=300 \mathrm{~mA})$ and high driver currents ($>=30 \mathrm{~mA}$), it may take up to 2 uS for it to come out of saturation. This condition will shorten the off time at frequencies $>=30 \mathrm{KHz}$, and is magnified at high temperature. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a nondarlington configuration is used, the following output drive condition is recommended: Forced Bata of output switch: Ic output / (Ic driver - 7mA*) >= $\mathbf{1 0}$

* The 1000hm resistor in the emitter of the driver divide requires about 7 mA before the output switch conducts.

Block Diagram

Electrical Characteristics Curve

Fig 1. Output Switch ON-OFF TIME vs. Oscillator Timing Capacitor

Fig 3. Oscillator Frequency vs. Timing Capacitor

Fig 5. Current Limit Sense Voltage vs. Temperature

Fig 2. Timing Capacitor Wave Form

Fig 4. Standby Supply Current vs. Supply Voltage

Dc to Dc Converter Controller

COMPLIANCE

Typical Application Circuit

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V} \sim 16 \mathrm{~V}, \mathrm{IO}=175 \mathrm{~mA}$	$30 \mathrm{mV}= \pm 0.05 \%$
Load Regulation	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}=75 \mathrm{~mA}$ to 175 mA	$10 \mathrm{mV}= \pm 0.017 \%$
Output Ripple	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I} \mathrm{I}=175 \mathrm{~mA}$	400 mVpp
Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I} 0=175 \mathrm{~mA}$	87.7%
Output Ripple with Optional Filter	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{IO}=175 \mathrm{~mA}$	40 mVpp

Figure 7. Step Up Converter

Figure 8. External Current Boost Connections for Ic Peak Greater than 1.5A
¢

Typical Application Circuit (Continue)

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V} \sim 25 \mathrm{~V}, \mathrm{IO}=500 \mathrm{~mA}$	$12 \mathrm{mV}= \pm 12 \%$
Load Regulation	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{IO}=50 \mathrm{~mA}$ to 500 mA	$3 \mathrm{mV}= \pm 0.03 \%$
Output Ripple	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{IO}=500 \mathrm{~mA}$	120 mVpp
Short Circuit Current	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \mathrm{~m} \Omega$	1.1 A
Efficiency	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{Io}=500 \mathrm{~mA}$	83.7%
Output Ripple with Optional Filter	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{IO}=500 \mathrm{~mA}$	40 mVpp

Figure 9. Step Down Converter

Figure 10. External Current Boost Connections for Ic Peak Greater than 1.5A
¢

Typical Application Circuit (Continue)

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V} \sim 6 \mathrm{~V}, \mathrm{IO}=100 \mathrm{~mA}$	$3 \mathrm{mV}= \pm 120.012 \%$
Load Regulation	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{IO}=10 \mathrm{~mA}$ to 100 mA	$0.022 \mathrm{~V}= \pm 0.09 \%$
Output Ripple	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{IO}=100 \mathrm{~mA}$	500 mVpp
Short Circuit Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega$	910 mA
Efficiency	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{IO}=100 \mathrm{~mA}$	62.2%
Output Ripple with Optional Filter	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{IO}=100 \mathrm{~mA}$	70 mVpp

Figure 11. Voltage Inverting Converter

Figure 12. External Current Boost Connections for Ic Peak Greater than 1.5A

Design Formula Table

Test	Step Up	Step Down	Voltage Inverting
$\frac{\text { ton }}{\text { toff }}$	$\frac{V o u t+V f-\operatorname{Vin}(\min)}{V c c(\min)-V s a t}$	$\frac{V o u t+V f}{V c c-V s a t-V o u t}$	$\frac{\mid \text { Vout } \mid+V f}{V c c-V s a t}$
(ton+ toff)	$\frac{1}{f \min }$	$\frac{1}{f \min }$	$\frac{1}{f \min }$
CT	4.0×10^{-5} ton	4.0×10^{-5} ton	4.0×10^{-5} ton
Ipk(switch)	2lout(max) $\left(\frac{\text { ton }}{\text { toff }}+1\right)$	2lout(max)	2lout(max) $\left(\frac{\text { ton }}{\text { toff }}+1\right)$
Rsc	$\left(\frac{0.3}{\operatorname{Ipk}(\text { switch })}\right)$	$\left(\frac{0.3}{\operatorname{Ipk}(\text { switch })}\right)$	$\left(\frac{0.3}{\operatorname{Ipk}(\text { switch })}\right)$
$\mathrm{L}(\mathrm{min})$	$\left(\frac{\text { Vin(min })- \text { Vsat }}{\text { Ipk(switch })}\right) *$ ton (max)	$\left(\frac{\text { Vin }(\mathrm{min})-\text { Vsat }- \text { Vout }}{\text { Ipk }(\text { switch })}\right) *$ ton $($ max $)$	$\left(\frac{V i n(\min)-V \operatorname{sat}}{I p k(s w i t c h)}\right) * \operatorname{ton}(\max)$
Co	$\left(9 \frac{\text { Iout } * \text { ton }}{\text { Vripple }(p p)}\right)$	$\left(\frac{\operatorname{Ipk}(\text { switch })(\text { ton }+ \text { toff })}{8 V \operatorname{ripple}(p p)}\right)$	$\left(9 \frac{\text { Iout } * \text { ton }}{\text { Vripple }(p p)}\right)$

Terms and Definitions

- Vsat = Saturation Voltage of the output switch.
- $\quad \mathrm{Vf}=$ Forward Voltage drop of the rectifier.

The following power supply characteristics must be chosen:

- Vin= Normal input voltage
- Vout: Desied Output voltage, |Vout| =1.25 (1+R2 / R1)
- lout : Desired output current.
- fmin : Minimum desired output switching frequency at the selected values for Vin and lo.
- Vripple(p-p): Desired peak-to-peak output ripple voltage. in practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation. COMPLIANCE

Dc to Dc Converter Controller

SOP-8 Mechanical Drawing

SOP-8 DIMENSION				
DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX.
A	4.80	5.00	0.189	0.196
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	
G	1.27 BSC		$0.05 B S C$	
K	0.10	0.25	0.004	0.009
M	0°	70	0°	$7 \underline{0}$
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

Marking Diagram

$$
\begin{aligned}
\mathbf{Y}= & \text { Year Code } \\
\mathbf{M}= & \text { Month Code } \\
& (\mathbf{A}=\text { Jan, } \mathbf{B}=\text { Feb, } \mathbf{C}=\text { Mar, } \mathbf{D}=\text { Apl, } \mathbf{E}=\text { May, } \mathbf{F}=\text { Jun, } \mathbf{G}=\text { Jul, } \mathbf{H}=\text { Aug, } \mathbf{I}=\text { Sep, } \\
& \mathbf{J}=\text { Oct, } \mathbf{K}=\text { Nov, } \mathbf{L}=\text { Dec }) \\
\mathbf{L}= & \text { Lot Code }
\end{aligned}
$$

DIP-8 Mechanical Drawing

DIP-8 DIMENSION				
DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	9.07	9.32	0.357	0.367
B	6.22	6.48	0.245	0.255
C	3.18	4.45	0.125	0.135
D	0.35	0.55	0.019	0.020
G	2.54 (typ)		0.10 (typ)	
J	0.29	0.31	0.011	0.012
K	3.25	3.35	0.128	0.132
L	7.75	8.00	0.305	0.315
M	-	10°	-	10°

Marking Diagram

Y = Year Code
$\mathbf{M}=$ Month Code
($\mathbf{A}=$ Jan, $\mathbf{B}=$ Feb, $\mathbf{C}=$ Mar, $\mathbf{D}=A p l, \mathbf{E}=$ May, $\mathbf{F}=$ Jun, $\mathbf{G}=J u l, ~ H=A u g, ~ I=S e p, ~$ J=Oct, K=Nov, L=Dec)
L = Lot Code

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Taiwan Semiconductor manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X FAN48610BUC33X FAN48610BUC45X FAN48617UC50X R3 430464BB KE177614 MAX809TTR NCV891234MW50R2G NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G NCP81109JMNTXG AP3409ADNTR-G1 NCP81241MNTXG LTM8064IY LT8315EFE\#TRPBF LTM4668AIY\#PBF NCV1077CSTBT3G XCL207A123CR-G MPM54304GMN-0002 MPM54304GMN-0003 XDPE132G5CG000XUMA1 MP8757GL-P MP9943AGQ-P MIC23356YFT-TR LD8116CGL HG2269M/TR OB2269 XD3526 U6215A U6215B U6620S LTC3412IFE LT1425IS MAX25203BATJA/VY+ MAX77874CEWM + XC9236D08CER-G ISL95338IRTZ MP3416GJ-P BD9S201NUX-CE2 MP5461GC-Z MPQ4415AGQB-Z MPQ4590GS-Z MCP1603-330IMC MCP1642B-18IMC MCP1642D-ADJIMC

