TAIWAN
SEMICONDUCTOR

Pin Definition:

1. Input
2. Ground
3. Enable
4. Bypass
5. Output

## General Description

The TS9001 series is a positive voltage linear regulator developed utilizing CMOS technology featured low quiescent current (30uA typ.) ,low dropout voltage, and high output voltage accuracy, making them ideal for battery applications. The Chip Enable (CE) includes a CMOS or TTL compatible input allows the output to be turned off to prolong battery life. The TS9001 series is included a precision voltage reference, error correction circuit, a current limited output driver, over temperature shutdown, and a reference bypass pin to improve its already excellent lownoise performance.

## Features

- Dropout voltage typically $0.4 \mathrm{~V} @ \mathrm{lo}=300 \mathrm{~mA}$ (Vo>2.5V)
- Output current up to 300 mA
- Low power consumption
- Output voltage $\pm 2 \%$
- Internal current limit and thermal shutdown
- Thermal shutdown protection


## Applications

- Palmtops
- Video recorders
- Battery powered equipment
- PC peripherals
- High-efficiency linear power supplies
- Digital signal camera


## Block Diagram



## Ordering Information

| Part No. | Package | Packing |
| :---: | :---: | :---: |
| TS9001x CX5 RF | SOT-25 | 3Kpcs / 7" Reel |

Note: Where $\underline{\mathbf{x}}$ denotes voltage option, available are $\mathbf{K}=2.5 \mathrm{~V}, \mathrm{~S}=3.3 \mathrm{~V}$

## Typical Application Circuit



EN (Pin 3) may be connected directly to $\mathrm{V}_{\mathrm{IN}}$ (Pin1) Low noise operation: $\mathrm{C}_{\mathrm{BYP}}=470 \mathrm{uF}, \mathrm{C}_{\text {out }}>2.2 \mathrm{uF}$ Basic operation: $\mathrm{C}_{\mathrm{BYP}}=$ not used, $\mathrm{C}_{\text {OUT }}>1 \mathrm{uF}$

TAIWAN
SEMICONDUCTOR
RoHS
compliance

## TS9001 Series <br> 300 mA CMOS LDO with Enable

Absolute Maximum Rating

| Parameter | Symbol | Limit | Unit |
| :--- | :---: | :---: | :---: |
| Input Supply Voltage | Vin | +7 | V |
| Enable Input Voltage | Vce | $\mathrm{Gnd}-0.3 \sim$ Vin +0.3 | V |
| Output Current | Io | $\mathrm{Pd} /($ Vin - Vout $)$ |  |
| Power Dissipation | $\mathrm{P}_{\mathrm{D}}$ | 380 | mW |
| Thermal Resistance | $\Theta \mathrm{ja}$ | 260 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Operating Junction Temperature Range | Tj | $-40 \sim+150$ | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $\mathrm{T}_{\text {STG }}$ | $-65 \sim+150$ | ${ }^{\circ} \mathrm{C}$ |
| Lead Soldering Temperature $\left(260^{\circ} \mathrm{C}\right)$ |  | 5 | S |

Notes: Stress above the listed absolute rating may cause permanent damage to the device.
Electrical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right.$, $\mathrm{lo}=1 \mathrm{~mA}$, Cout $=2.2 \mathrm{uF}, \mathrm{Vce} \geq 2 \mathrm{~V}$, unless otherwise noted)

| Parameter | Conditions |  | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Voltage | $\mathrm{Vin}=\mathrm{Vo}$ + 1V |  | 0.985\|Vo| |  | 1.015\|Vo| | V |
| Output Voltage Temperature Coefficient |  |  | -- | 50 | -- | ppm $/{ }^{\circ} \mathrm{C}$ |
| Maximum Output Current | $\mathrm{Vin}=\mathrm{Vo}+1 \mathrm{~V}$, |  | 300 | -- | -- | mA |
| Line Regulation | $\mathrm{Vo}+1 \mathrm{~V} \leq \mathrm{Vin} \leq 7 \mathrm{~V}$ |  | -- | -- | 0.3 | \%/V |
| Load Regulation | $\begin{array}{\|l\|} \hline \mathrm{Vin}=\mathrm{Vo}+1 \mathrm{~V}, \\ 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 300 \mathrm{~mA} \end{array}$ | Vout 22.5 V | -- | 0.2 | 1.0 | \%/V |
|  | $\begin{aligned} & \mathrm{Vin}=\mathrm{Vo}+1 \mathrm{~V}, \\ & 1 \mathrm{~mA} \leq \mathrm{I} \leq 200 \mathrm{~mA} \end{aligned}$ | Vout<2.5V | -- | 0.2 | 1.0 |  |
| Dropout Voltage | $\begin{array}{\|l\|} \hline \text { lo=300mA, } \\ \text { Vout }=\text { Vo }-2 \% \\ \hline \end{array}$ | Vout 22.5 V | -- | 300 | -- | mV |
|  | $\begin{array}{\|l\|} \hline \text { lo=200mA, } \\ \text { Vout=Vo }-2 \% \\ \hline \end{array}$ | Vout<2.5V | -- | 800 | 1000 |  |
| Quiescent Current | Vin $\leq 0.4 \mathrm{~V}$ (shutdown) |  | -- | 2 | 3 | UA |
| Ground Pin Current | $\mathrm{I}=1 \mathrm{~mA}$ to 300 mA |  | -- | 30 | 50 | uA |
| Output Current Limit | Vout $=0 \mathrm{~V}$ |  | -- | 450 | -- | mA |
| Power Supply Rejection Ratio | At $\mathrm{f}=1 \mathrm{kHz}, \mathrm{lo}=100 \mathrm{~mA}$, |  | -- | 60 | -- | dB |
| Power Supply Rejection Ratio | At $\mathrm{f}=1 \mathrm{kHz}, \mathrm{lo}=100 \mathrm{~mA}$, Cbypass=0.01uF |  | -- | 75 | -- | dB |
| Output Noise | $\mathrm{lo}=10 \mathrm{~mA}, \mathrm{f}=10 \mathrm{~Hz}$ to 100 kHz , 10pF from bypass to Ground |  | -- | 30 | -- | uVrms |


| Enable Input | Regulation shutdown | -- | -- | 0.4 | V |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Enable Input Logic-Low Voltage | Reg |  |  |  |  |
| Enable Input Logic-High Voltage | Regulation enable | 2.0 | -- | -- | V |
| Enable Input Current | $\mathrm{V}_{\mathrm{LL}} \leq 0.4 \mathrm{~V}$ | -- | 0.01 | 1 | uA |
|  | $\mathrm{V}_{\mathrm{LL}} \geq 2.0 \mathrm{~V}$ | -- | 1 | 5 |  |

TAIWAN
SEMICONDUCTOR

## TS9001 Series <br> 300mA CMOS LDO with Enable

## Detail Description

## Description

The TS9001 series of CMOS regulators contain a P-MOS pass transistor, voltage reference, error amplifier, over current protection, thermal shutdown and short circuit protection.
The TS9001 series switches from voltage mode to current mode when the load exceeds the rated output current. This prevents over stress. The TS9000 also incorporates current fold-back to reduce power dissipation when the output is short circuit. This feature becomes active when the output drops below 1.05 V , and reduces the current flow by $65 \%$. Full current is restored when the voltage exceeds 0.95 V .
The internal P-channel pass transistor receives data from the error amplifier, over current shutdown, short output protection and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over current and thermal shutdown circuits become active when the junction temperature exceeds $150^{\circ} \mathrm{C}$, or the current exceeds 300 mA . During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below $120^{\circ} \mathrm{C}$.

## Enable

The Chip Enable pin normally floats high. When actively, pulled low, the PMOS pass transistor shut off, and all internal circuits are powered down. In this state, the quiescent current is less than 5uA. This pin behaves much like an electronic switch.

## External Capacitor

The TS9001 series is stable with an output capacitor to ground of 2.2 uF or greater. It can keep stable even with higher or poor ESR capacitors.
A second capacitor is recommended between the input and ground to stabilize Vin. The input capacitor should be larger than 0.1 uF to have a beneficial effect.
A third capacitor can be connected between the Bypass pin and Ground. This capacitor can be a low cost polyester film variety between the value of $1 \sim 10 n F$. A larger capacitor improves the AC ripple rejection, but also makes the output come up slowly. This "soft" turn-on is desirable in some applications to limit turn-on surges.
All capacitors should be placed in close proximity to the pins. A "quiet" ground termination is desirable.

COMPLIANCE
Application Examples

## Standard Circuit



Typical Application Circuit 1


Typical Application Circuit 2
 COMPLIANCE

## SOT-25 Mechanical Drawing



| SOT-25 DIMENSION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| DIM | MILLIMETERS |  | INCHES |  |
|  | MIN | MAX | MIN | MAX. |
| A+A1 | 0.09 | 1.25 | 0.0354 | 0.0492 |
| B | 0.30 | 0.50 | 0.0118 | 0.0197 |
| C | 0.09 | 0.25 | 0.0035 | 0.0098 |
| D | 2.70 | 3.10 | 0.1063 | 0.1220 |
| E | 1.40 | 1.80 | 0.0551 | 0.0709 |
| E | 1.90 BSC |  | 0.0748 BSC |  |
| H | 2.40 | 3.00 | 0.09449 | 0.1181 |
| L | 0.35 BSC |  | 0.0138 BSC |  |
| O1 | $0{ }^{\circ}$ |  | $0{ }^{\circ}$ |  |
| S1 | 0.95 BSC |  | 0.0374 BSC |  |

## Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for AC, DC \& Servo Motors category:
Click to view products by Taiwan Semiconductor manufacturer:
Other Similar products are found below :
79207644 805470 B 40040 MY 80807028 808070 Y 01125 Z 825294A40005MW 82664024 R88M-G10030H-S2 M4E068-EC03-01 1032
80510503 805470B40020MY $80627003 \underline{808070 Y 00250 Y} 827140238280000382830009$ KDE4014XF-380 (D5) R88A-RG08UA 82810017 82861019 R88M-K75030H R88M-G10030L-OS2 R88M-GP20030L-OS2 R88M-K90010F-S2 R88M-GP40030L-OS2 R88M-

K1K030H-S2 89830012 R88M-GP20030H-BO R88M-G10030L-BO R88M-GP20030S-OS2 R88M-K20030H-B R88M-G40030H-BS2
R88M-GP20030H-O R88M-G40030T-S2 R88M-K10030L 8284000382840004 R88M-GP20030L R88M-GP20030H-BS2 R88M-GP10030S
R88M-GP20030L-S2 R88M-G40030H R88M-GP20030L-O R88M-GP20030L-BS2 R88M-GP20030T-OS2 82869011 R88M-K1K020F
82524021 R88M-K1K520F 82862202

