

TO-92S

5

Pin Definition:

- 1. V_{CC} 2. GND
- 3. Output

SOT-23

Pin Definition:

- 1. V_{CC}
- 2. Output
- 3. GND

Description

TSH282 is an unipolar Hall effect sensor IC. It incorporates advanced chopper stabilization technology to provide accurate and stable magnetic switch points. The design, specifications and performance have been optimized for applications of solid state switches. The output transistor will be switched on (B_{OP}) in the presence of a sufficiently strong South pole magnetic field facing the marked side of the package. Similarly, the output will be switched off (B_{RP}) in the presence of a weaker South field and remain off with "0" field.

Features

- CMOS Hall IC Technology
- Solid-State Reliability
- Chopper stabilized amplifier stage
- Unipolar, output switches with absolute value of South pole from magnet
- Operation down to 3.0V
- High Sensitivity for direct reed switch replacement applications

Ordering Information

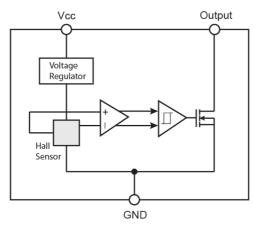
Part No.	Package	Packing			
TSH282CT B0G	TO-92S	1Kpcs / Bulk Bag			
TSH282CX RFG	SOT-23	3Kpcs / 7" Reel			

Note: "G" denote for Halogen Free Product

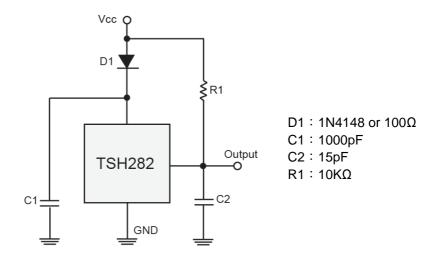
Application

- Solid state switch
- Limit switch, Current limit
- Interrupter
- Current sensing
- Magnet proximity sensor for reed switch replacement

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)


Characteristics	Limit	Value	Unit		
Supply voltage	V _{cc}	27	V		
Output Voltage		V _{OUT}	27	V	
Reverse voltage		V _{CC/OUT}	-0.3	V	
Magnetic flux density			Unlimited	Gauss	
Output current	I _{OUT}	50	mA		
Operating Temperature Range	T _{OPR}	-40 to +85	°C		
Storage temperature range	T _{STG}	-55 to +150	°C		
Maximum Junction Temp	T _J	150	°C		
Thermal Resistance - Junction to Ambient	TO-92S	0	206	°C/W	
mermai Resistance - Junction to Ambient	SOT-23	θ_{JA}	543	C/vv	
Thermal Desistance Junction to Cook	TO-92S	0	148	9000	
Thermal Resistance - Junction to Case	SOT-23	$\theta_{\sf JC}$	410	°C/W	
Pookage Power Discipation	TO-92S	В	606	m\//	
Package Power Dissipation	SOT-23	$ P_{D}$	230	mW	

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.



Block Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse VDD protection is not included. For reverse voltage protection, a 100Ω resistor in series with VDD is recommended.

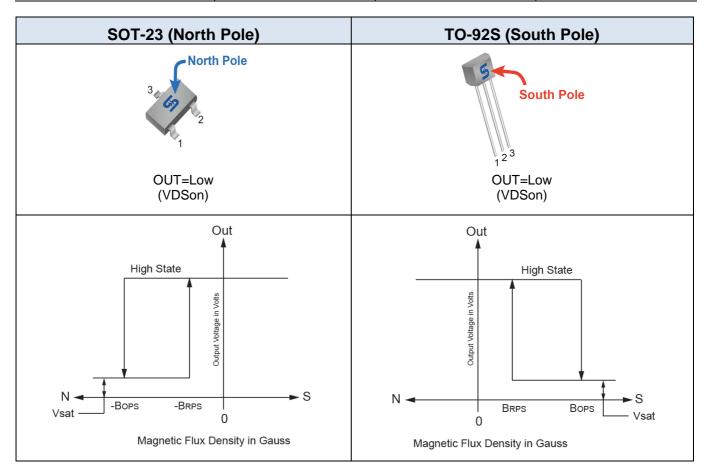
Typical Application Circuit

Electrical Specifications (DC Operating Parameters : T_A=+25°C,V_{CC}=12V)

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage	Operating	3.0		24	V
Supply Current	B <b<sub>OP</b<sub>		2.5	5.0	mA
Output Low Voltage	$I_{OUT} = 20$ mA, B>B _{OP}			500	mV
Output Leakage Current	I_{OFF} B <b<sub>RP, $V_{OUT} = 20V$</b<sub>			10	uA
Output Rise Time	$R_L=1k\Omega$, $C_L=20pF$		0.04		uS
Output Fall Time	$R_L=1k\Omega$; $C_L=20pF$		0.18		uS

Magnetic Specifications

DC Operating Parameters: TA=+25°C, V_{DD}=12V


Parameter	Symbol	Test condition	Min	Тур	Max	Unit
Operate Point	B _{OP}		45		100	Gauss
Release Point	B_RP		25		70	Gauss
Hysteresis	B _{HYS}			20		Gauss

Note: 1G (Gauss) = 0.1mT (millitesta)

Output Behavior versus Magnetic Pole

DC Operating Parameters Ta = -40 to 125° C, $V_{DD} = 3.0 \sim 24$ V

Parameter	Test condition	OUT(TO-92S)	OUT(SOT-23)		
South pole	B>Bop[(100)~(45)]	Low	Open(Pull-up Voltage)		
Null or weak magnetic field	-Brp ~ +Brp	Open(Pull-up Voltage)	Open(Pull-up Voltage)		
North pole	B< -Bop(-25~-70)	Open(Pull-up Voltage)	Low		

Characteristic Performance

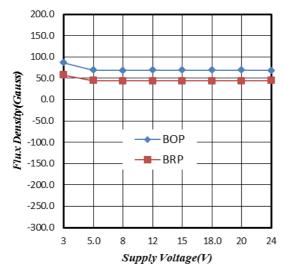


Figure 1. Supply Voltage vs. Flux Density

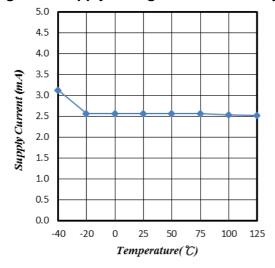


Figure 3. Supply Current vs. Temperature

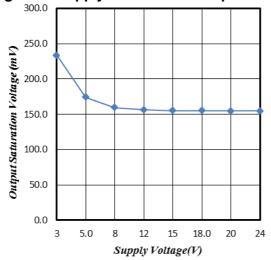


Figure 5. Output Saturation Voltage vs. Supply Voltage

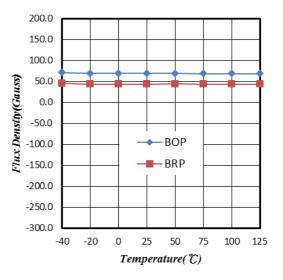


Figure 2. Temperature vs. Flux Density

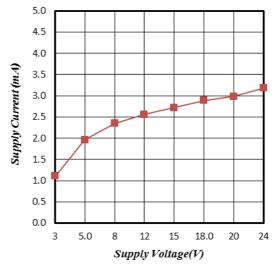


Figure 4. Supply Current vs. Supply Voltage

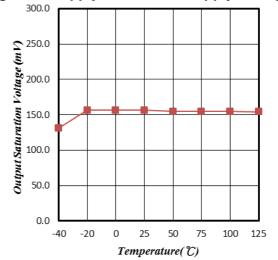


Figure 6. Output Saturation Voltage vs. Temperature

Characteristic Performance

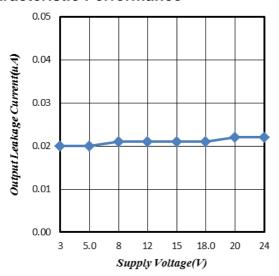


Figure 7. Output Leakage Current vs.
Supply Voltage

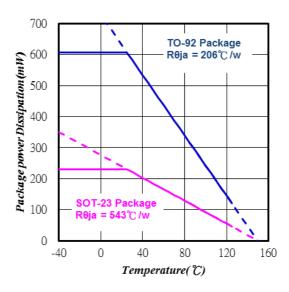
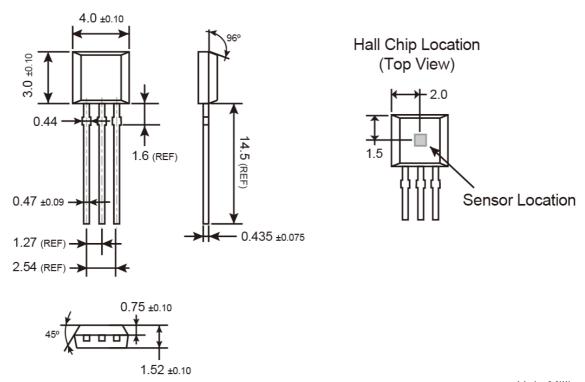
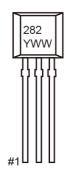



Figure 8. Power Dissipation vs. Temperature



TO-92S Mechanical Drawing

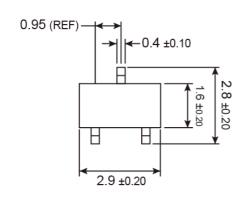
Unit: Millimeters

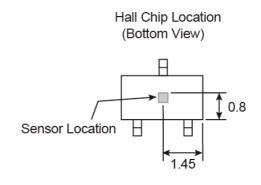
Marking Diagram

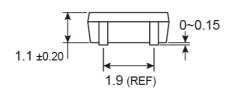
282 = Device Code

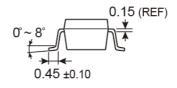
Y = Year Code (3=2013, 4=2014....)

6/8

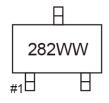

WW = Week Code (01~52)


Version: B13





SOT-23 Mechanical Drawing



Unit: Millimeters

Marking Diagram

282 = Device Code

W = Week Code Table

= vveek	Code	i abie	;										
week	1	2	3	4	5	6	7	8	9	10	11	12	13
code	OA	OB	OC	OD	OE	OF	OG	ОН	OI	OJ	OK	OL	OM
week	14	15	16	17	18	19	20	21	22	23	24	25	26
code	ON	00	OP	OQ	OR	os	OT	OU	OV	OW	OX	OY	OZ
week	27	28	29	30	31	32	33	34	35	36	37	38	39
code	PA	PB	PC	PD	PE	PF	PG	PH	PI	PJ	PK	PL	PM
week	40	41	42	43	44	45	46	47	48	49	50	51	52
code	PN	PΩ	PP	PΩ	PR	PS	PT	PU	PV	PW	PΧ	PY	P7

TSH282

Sensitivity Unipolar Hall Effect Switch

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Industrial Hall Effect/Magnetic Sensors category:

Click to view products by Taiwan Semiconductor manufacturer:

Other Similar products are found below:

GT-13013 GT-13040 GT-14114 ATS682LSHTN-T SR4P2-C7 GT-12076 GT-13012 GT-14049 GT-14132 GT-18030 103FW12-R3

A1155LLHLT-T SMSA2P30CG P2D-000 GN 55.2-SC-15-3 GN 55.2-SC-5-3 MZA70175 103FW41-R1 KJR-D100AN-DNA-VE KJR
D100AN-DNIA-V2 SR-10018 115L 14E 502 W06017 ATS128LSETN-T TLE4906LHALA1 TLE49452LHALA1 BU52013HFV-TR

MRMS591A 103SR14A-1 MZT7-03VPS-KR0 MZT7-03VPS-KW0 MZT8-03VPS-KW0 MZT8-28VPS-KP0 A1326LLHLT-T

A1156LLHLT-T ACS770LCB-100U-PFF-T ATS617LSGTN-T AH49ENTR-G1 SS360PT SS311PT GN 55.2-ND-15-3 GN 55.2-ND-18-3

GN 55.2-ND-8-3 GN 55.2-SC-10-3 GN 55.4-ND-10-7,5-2 GN 55.4-ND-12-9,5-2,5 GN 55.4-ND-26-20,3-5 GN 55.4-ND-7,5-4-1,5 101MG7
BP A3214LUA-T A3214EUA-T