

UNIT

V

mΩ

nC

Taiwan Semiconductor

VALUE

100

90

100

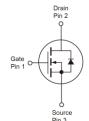
9.3

HALOGEN

N-Channel Power MOSFET

100V, 15A, $90m\Omega$

FEATURES


- 100% avalanche tested
- Low gate charge for fast switching
- Pb-free plating
- RoHS compliant
- Halogen-free mold compound

APPLICATION

- Networking
- Load Switching
- LED Lighting Control
- AC-DC Secondary Rectification

KEY PERFORMANCE PARAMETERS

 $V_{GS} = 10V$

 $V_{GS} = 4.5V$

PARAMETER

V_{DS}

Qg

R_{DS(on)} (max)

Notes: Moisture sensitivity level: level 3. Per J-STD-020

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)				
PARAMETER		SYMBOL	LIMIT	UNIT
Drain-Source Voltage		V _{DS}	100	V
Gate-Source Voltage		V_{GS}	±20	V
Continuous Drain Current (Note 1)	$T_{\rm C} = 25^{\circ}{\rm C}$	- I _D	15	А
Continuous Drain Current (Note 1)	$T_{\rm C} = 100^{\circ}{\rm C}$		9.5	
Pulsed Drain Current (Note 2)		I _{DM}	60	А
Total Power Dissipation @ T _C = 25°C		P _{DTOT}	50	W
Single Pulsed Avalanche Energy (Note 3)		E _{AS}	18	mJ
Single Pulsed Avalanche Current (Note 3)		I _{AS}	6	А
Operating Junction and Storage Temperature Range		T_J, T_STG	- 55 to +150	°C

THERMAL PERFORMANCE				
PARAMETER	SYMBOL	LIMIT	UNIT	
Junction to Case Thermal Resistance	R _{eJC}	2.5	°C/W	
Junction to Ambient Thermal Resistance	R _{⊖JA}	62	°C/W	

Notes: $R_{\Theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistances. The case thermal reference is defined at the solder mounting surface of the drain pins. $R_{\Theta JA}$ is guaranteed by design while $R_{\Theta CA}$ is determined by the user's board design. $R_{\Theta JA}$ shown below for single device operation on FR-4 PCB in still air.

TSM900N10

Taiwan Semiconductor

ELECTRICAL SPECIFICA	TIONS ($T_A = 25^{\circ}C$ unles	s otherwise no	oted)	I	I	1
PARAMETER	CONDITIONS	SYMBOL	MIN	ТҮР	MAX	UNIT
Static (Note 4)						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250 \mu A$	BV _{DSS}	100			V
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	V _{GS(TH)}	1.2	1.6	2.5	V
Gate Body Leakage	$V_{GS} = \pm 20V, V_{DS} = 0V$	I _{GSS}			±100	nA
Zero Gate Voltage Drain Current	$V_{DS} = 100V, V_{GS} = 0V$	I _{DSS}			1	μA
	$V_{GS} = 10V, I_{D} = 5A$	R _{DS(on)}		72	90	mΩ
Drain-Source On-State Resistance	$V_{GS} = 4.5V, I_{D} = 3A$			75	100	
Dynamic ^(Note 5)						
Total Gate Charge		Qg		9.3		
Gate-Source Charge	$V_{DS} = 48V, I_D = 5A,$	Q _{gs}		2.1		nC
Gate-Drain Charge	V _{GS} = 10V	Q_gd		1.8		
Input Capacitance		C _{iss}		1480		
Output Capacitance	$V_{DS} = 50V, V_{GS} = 0V,$	C _{oss}		480		pF
Reverse Transfer Capacitance	f = 1.0MHz	C _{rss}		35		
Gate Resistance	F = 1MHz, open drain	R _g		1.3		Ω
Switching (Note 6)						•
Turn-On Delay Time		t _{d(on)}		2.9		
Turn-On Rise Time	$V_{DD} = 30V,$ $R_{GEN} = 3.3\Omega,$ $I_D = 1A, V_{GS} = 10V,$	t _r		9.5		
Turn-Off Delay Time		t _{d(off)}		18.4		ns
Turn-Off Fall Time		t _f		5.3		
Source-Drain Diode (Note 4)	1			•	•	
Forward On Voltage	$I_{\rm S} = 3.3$ A, $V_{\rm GS} = 0$ V	V _{SD}			1	V
Continuous Drain-Source Diode		Is			15	Α
Pulse Drain-Source Diode	$V_{G}=V_{D}=0V$, Force Current	I _{SM}			60	Α

Notes:

1. Current limited by package

2. Pulse width limited by the maximum junction temperature

3. L = 0.1mH, I_{AS} = 6A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}C$

4. Pulse test: PW \leq 300µs, duty cycle \leq 2%

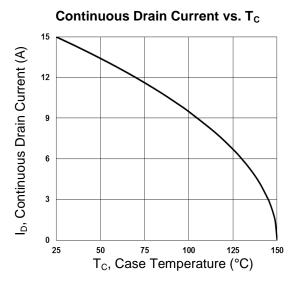
5. For DESIGN AID ONLY, not subject to production testing.

6. Switching time is essentially independent of operating temperature.

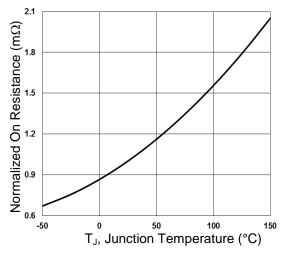
ORDERING INFORMATION (EXAMPLE)

PART NO.	PACKAGE	PACKING
TSM900N10CH X0G	TO-251S (IPAK SL)	75pcs / Tube
TSM900N10CP ROG	TO-252 (DPAK)	2,500pcs / 13" Reel

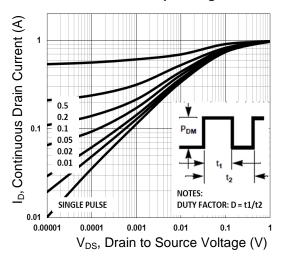
Note:

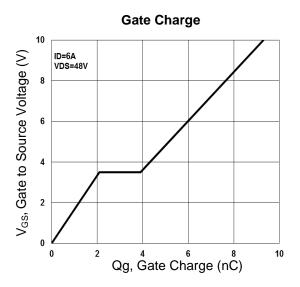

1. Compliant to RoHS Directive 2011/65/EU and in accordance to WEEE 2002/96/EC

2. Halogen-free according to IEC 61249-2-21 definition

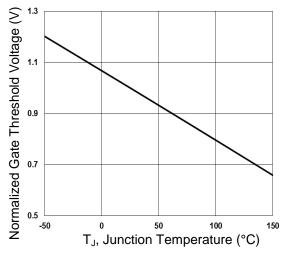


CHARACTERISTICS CURVES

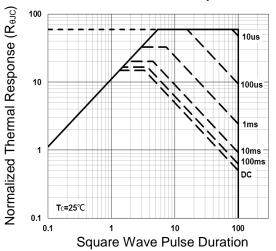

 $(T_C = 25^{\circ}C \text{ unless otherwise noted})$



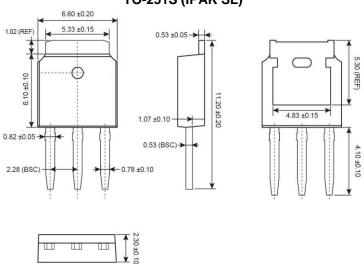
On-Resistance vs. Junction Temperature



Maximum Safe Operating Area



Threshold Voltage vs. Junction Temperature



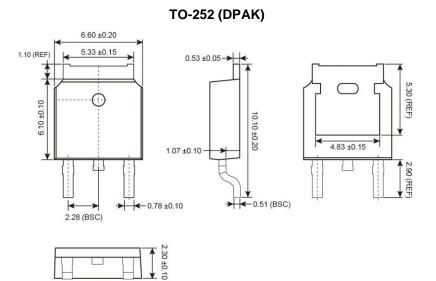
Normalized Thermal Transient Impedance Curve

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

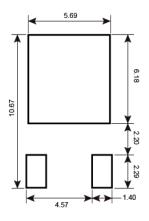
MARKING DIAGRAM

	\square	
	900N10 YML	
#		

Y = Year Code


M = Month Code for Halogen Free Product

	O =Jan	P =Feb	Q =Mar	R =Apr
•	S =May	T =Jun	U =Jul	V =Aug
	W =Sep	X =Oct	Y =Nov	Z =Dec
L	= Lot Code (1-	~9, A~Z)		



PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

SUGGESTED PAD LAYOUT

MARKING DIAGRAM

	Y = Year CodeM = Month Code for Halogen Free Product
900N10 YML	O=JanP=FebQ=MarR=AprS=MayT=JunU=JulV=Aug
() U () #1U U	W =Sep X =Oct Y =Nov Z =Dec L = Lot Code (1~9, A~Z)

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Taiwan Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B