2.2A, 400V - 1000V Glass Passivated Bridge Rectifier

FEATURES

- Glass passivated junction
- Ideal for automated placement
- Reliable low cost construction utilizing molded plastic technique
- High surge current capability
- UL Recognized File \# E-326854
- Compliant to RoHS directive 2011/65/EU and in accordance to WEEE 2002/96/EC
- Halogen-free according to IEC 61249-2-21

KEY PARAMETERS		
PARAMETER	VALUE	UNIT
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	2.2	A
$\mathrm{~V}_{\text {RRM }}$	$400-1000$	V
$\mathrm{I}_{\mathrm{FSM}}$	90	A
$\mathrm{~T}_{\mathrm{JMAX}}$	150	${ }^{\circ} \mathrm{C}$
Package	YBS	
Configuration	Quad	

APPLICATIONS

- Switching mode power supply (SMPS)
- Adapters
- TV
- Monitor

MECHANICAL DATA

- Case: YBS
- Molding compound meets UL 94V-0 flammability rating
- Moisture sensitivity level: level 1, per J-STD-020
- Packing code with suffix "G" means green compound (halogen-free)
- Matte tin plated leads, solderable per J-STD-002
- Meet JESD 201 class 1A whisker test
- Polarity: As marked
- Weight: 0.22 g (approximately)

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	$\mathbf{S Y M B O L}$	YBS $\mathbf{2 2 0 4 G}$	YBS $\mathbf{2 2 0 5 G}$	YBS $\mathbf{2 2 0 6 G}$	YBS $\mathbf{2 2 0 7 G}$	UNIT
Marking code on the device		YBS2204G	YBS2205G	YBS2206G	YBS2207G	
Repetitive peak reverse voltage	$\mathrm{V}_{\mathrm{RRM}}$	400	600	800	1000	V
Reverse voltage, total rms value	$\mathrm{V}_{\mathrm{R}(\mathrm{RMS})}$	280	420	560	700	V
Forward current	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$		2.2	A		
Surge peak forward current, 8.3 ms single half sine-wave superimposed on rated load	$\mathrm{I}_{\mathrm{FSM}}$		90	A		
I^{2} t value (of a surge on-state current)	$\mathrm{I}^{2} \mathrm{t}$		33	$\mathrm{~A}^{2} \mathrm{~S}$		
Junction temperature	T_{J}		-55 to +150	${ }^{\circ} \mathrm{C}$		
Storage temperature	$\mathrm{T}_{\mathrm{STG}}$		-55 to +150	${ }^{\circ} \mathrm{C}$		

THERMAL PERFORMANCE			
PARAMETER	SYMBOL	TYP	UNIT
Junction-to-lead thermal resistance	$\mathrm{R}_{\text {ө儿 }}$	24	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-ambient thermal resistance	$\mathrm{R}_{\text {өJA }}$	61	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-case thermal resistance	$\mathrm{R}_{\text {өJc }}$	11	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Thermal Performance Note: Units mounted on recommended PCB (16mm x 16mm Cu pad test board)

ELECTRICAL SPECIFICATIONS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	CONDITIONS	SYMBOL	TYP	MAX	UNIT
Forward voltage ${ }^{(1)}$	$\mathrm{I}_{\mathrm{F}}=1.1 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	V_{F}	0.86	0.92	V
	$\mathrm{I}_{\mathrm{F}}=2.2 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		0.91	0.97	V
	$\mathrm{I}_{\mathrm{F}}=1.1 \mathrm{~A}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$		0.73	0.9	V
	$\mathrm{I}_{\mathrm{F}}=2.2 \mathrm{~A}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$		0.78	0.95	V
Reverse current @ rated $\mathrm{V}_{\mathrm{R}}{ }^{(2)}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	I_{R}	0.2	5	$\mu \mathrm{A}$
	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$		35	100	$\mu \mathrm{A}$
Junction capacitance	$1 \mathrm{MHz}, \mathrm{V}_{\mathrm{R}}=4.0 \mathrm{~V}$	CJ	70	90	pF
Reverse recovery time	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{R}}=1.0 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{RR}}=0.25 \mathrm{~A} \end{aligned}$	$t_{\text {rr }}$	2400	4000	ns

Notes:

1. Pulse test with $\mathrm{PW}=0.3 \mathrm{~ms}$
2. Pulse test with $\mathrm{PW}=30 \mathrm{~ms}$

ORDERING INFORMATION

PART NO.	PACKING CODE	PACKING CODE SUFFIX	PACKAGE	PACKING
YBS22xxG $($ Note 1,2)	RA	G	YBS	$3,000 / 13$ " Plastic reel

Notes:

1. " xx " defines voltage from 400 V (YBS2204G) to 1000 V (YBS2207G)
2. Whole series with green compound (halogen-free)

EXAMPLE

EXAMPLE P/N	PART NO.	PACKING CODE	PACKING CODE SUFFIX	DESCRIPTION
YBS2207G RAG	YBS2207G	RA	G	Green compound

CHARACTERISTICS CURVES

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Fig. 1 Forward Current Derating Curve
Fig. 2 Typical Junction Capacitance

Fig. 3 Typical Reverse Characteristics
Fig. 4 Typical Forward Characteristics

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)
YBS

DIM.	Unit (mm)		Unit (inch)	
	Min.	Max.	Min.	Max.
A	1.30	1.50	0.051	0.059
A1	0.04	0.08	0.002	0.003
b	0.95	1.15	0.037	0.045
c	0.27	0.40	0.011	0.016
D	6.50	6.70	0.256	0.264
D1	2.90	3.10	0.114	0.122
E	7.90	8.60	0.311	0.339
E1	7.20	7.40	0.283	0.291
e	5.00	5.20	0.197	0.205
L	0.70	1.05	0.028	0.041

SUGGESTED PAD LAYOUT

Symbol	Unit (mm)	Unit (inch)
A	1.80	0.070
B	2.00	0.078
C	9.15	0.360
D	7.10	0.279

MARKING DIAGRAM

P/N	$=$ Marking Code
YW	$=$ Date Code
F	$=$ Factory Code

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications.
Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bridge Rectifiers category:
Click to view products by Taiwan Semiconductor manufacturer:

Other Similar products are found below :
MB2510 MB252 MB356G MB358G GBJ1504-BP GBU15J-BP GBU15K-BP GBU4A-BP GBU6B-E3/45 GSIB680-E3/45 DB101-BP DF01 DF10SA-E345 KBPC50-10S RS405GL-BP G5SBA60-E3/51 GBU10J-BP GBU6M GBU8D-BP GBU8J-BP GSIB1520-E3/45 2KBB10 36MB140A TB102M MB1510 MB258 MB6M-G MB86 TL401G MDA920A2 TU602 TU810 MP501W-BP BR101-BP BR84DTP204 BU2008-E3/51 36MB100A 36MT60 KBPC10/15/2501WP KBPC25-02 VS-2KBB60 DF06SA-E345 DF1510S VS40MT160PAPBF W02M GBL02-E3/45 GBU4G-BP GBJ2506-BP GBU6B-E3/51 GSIB15A80-E3/45

