Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

/!\ REMINDERS

Product Information in this Catalog

Product information in this catalog is as of January 2021. All of the contents specified herein and production status of the products listed in this catalog are subject to change without notice due to technical improvement of our products, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

Approval of Product Specifications

Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available. When using our products, please be sure to approve our product specifications or make a written agreement on the product specification with TAIYO YUDEN in advance.

Pre-Evaluation in the Actual Equipment and Conditions

Please conduct validation and verification of our products in actual conditions of mounting and operating environment before using our products.

Limited Application

1. Equipment Intended for Use

The products listed in this catalog are intended for general-purpose and standard use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and other equipment specified in this catalog or the individual product specification sheets.

TAIYO YUDEN has the line-up of the products intended for use in automotive electronic equipment, telecommunications infrastructure and industrial equipment, or medical devices classified as GHTF Classes A to C (Japan Classes I to III). Therefore, when using our products for these equipment, please check available applications specified in this catalog or the individual product specification sheets and use the corresponding products.

2. Equipment Requiring Inquiry

Please be sure to contact TAIYO YUDEN for further information before using the products listed in this catalog for the following equipment (excluding intended equipment as specified in this catalog or the individual product specification sheets) which may cause loss of human life, bodily injury, serious property damage and/or serious public impact due to a failure or defect of the products and/or malfunction attributed thereto.

- (1) Transportation equipment (automotive powertrain control system, train control system, and ship control system, etc.)
- (2) Traffic signal equipment
- (3) Disaster prevention equipment, crime prevention equipment
- (4) Medical devices classified as GHTF Class C (Japan Class III)
- (5) Highly public information network equipment, dataprocessing equipment (telephone exchange, and base station, etc.)
- (6) Any other equipment requiring high levels of quality and/or reliability equal to the equipment listed above

3. Equipment Prohibited for Use

Please do not incorporate our products into the following equipment requiring extremely high levels of safety and/or reliability.

- (1) Aerospace equipment (artificial satellite, rocket, etc.)
- (2) Aviation equipment *1
- (3) Medical devices classified as GHTF Class D (Japan Class IV), implantable medical devices *2

- (4) Power generation control equipment (nuclear power, hydroelectric power, thermal power plant control system, etc.)
- (5) Undersea equipment (submarine repeating equipment, underwater work equipment, etc.)
- (6) Military equipment
- (7) Any other equipment requiring extremely high levels of safety and/or reliability equal to the equipment listed above

*Notes

- 1. There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.
- Implantable medical devices contain not only internal unit which is implanted in a body, but also external unit which is connected to the internal unit.

4. Limitation of Liability

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment that is not intended for use by TAIYO YUDEN, or any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

Safety Design

When using our products for high safety and/or reliability-required equipment or circuits, please fully perform safety and/or reliability evaluation. In addition, please install (i) systems equipped with a protection circuit and a protection device and/or (ii) systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault for a failsafe design to ensure safety.

Intellectual Property Rights

Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.

Limited Warranty

Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a failure or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement

■ TAIYO YUDEN's Official Sales Channel

The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

Caution for Export

2021

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

Industrial Application Guide

The products described as "For Telecommunications Infrastructure and Industrial Equipment" in this catalog are intended for use in the equipment shown in the below table as its typical example. Therefore, when using our products for these equipment, please check it carefully by referring to the part number or the individual product specification sheets and use the corresponding products. Should you have any questions on this matter, please contact us.

Category	Telecommunications Infrastructure and Industrial Equipment (Typical Example)
Telecommunications Infrastructure	 Base Station Optical Transceiver Router/Switch (Carrier-Grade) UPS (Uninterruptible Power Supply), etc.
Factory Automation	PLC (Programmable Logic Controller)Servomotor/Servo DriverIndustry Robot, etc.
Measurement	 Gas Meter Water Meter Flow Meter Pressure Gauge Meter Magnetometer Thermometer, etc.
Electric Power Apparatus	 Power Conditioner (Solar Power System) Smart Meter GFCI (Ground Fault Circuit Interrupter) Electric Vehicle Charging Station, etc.

Part Numbering System

Multilayer Ceramic Capacitors:

If the 15th code from the left is "8", it indicates "For Telecommunications Infrastructure and Industrial Equipment" or "For Medical Devices".

Inductors:

If the 1st code from the right is "8" regardless of the total digit number, it indicates "For Telecommunications Infrastructure and Industrial Equipment" or "For Medical Devices".

Because there are some exceptions, for details please refer to each page of this catalog where the part numbering system of each product is described.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/)

Medical Application Guide

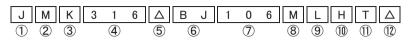
The products described as "For Medical Devices" in this catalog are intended for use in the medical devices classified as GHTF Classes A to C (Japan Classes I to III) except for all medical devices classified as GHTF Class D (Japan Class IV) and implantable medical devices (bone-anchored hearing aid, artificial retina system, and external unit which is connected to internal unit which is implanted in a body, etc.). Therefore, when using our products for these medical devices, please check it carefully by referring to the part number or the individual product specification sheets and use the corresponding products. Should you have any questions on this matter, please contact us.

Risk	Level	Low					High
Japan	Classification according to the PMD Act of Japan (based on the GHTF Rules)	Glass I General Medical Devices (GHTF Class A) Medical devices with extremely low risk to the human body in case of problems [Ex.] In Vitro Diagnostic Devices Nebulizer Blood Gas Analyzer Plethysmographs Breathing Sensor AC-powered Operating Table Surgical Light Cholesterol Analysis Device Blood Type Analysis Device, etc.	Medical relatively human by problem [Ex.] • Electron • Electron Gauge • Electron • Hearing • Electroc • MRI • Ultrason • Diagnost • X-ray Diagnost • Central of the street	ic Thermometer ic Blood Pressure ic Endoscope Aid ardiograph ic Diagnostic System ic Imaging Equipment agnostic Equipment	Class III Specially-control Medical Dev (GHTF Class Medical devices of relatively high risk human body in car problems [Ex.] Dialysis Machine Radiation Therapy Bellings Infusion Pump Respirator Glucose Monitoring AED (Automated E Defibrillator) Skin Laser Scanner Electric Surgical Ur Insulin Pump, etc.	rolled ices ices ices ices ices ices ices ices	Class IV Specially-controlled Medical Devices (GHTF Class D) Medical devices highly invasive to patients and with life-threatening risk in case of problems [Ex.] *Cardiac Pacemaker *Video Flexible Angioscope *Implantable Infusion Pump *Cardiac Electrosurgical Unit *Inspection Device with Cardiac Catheter Defibrillator, etc.
	cation	Class I General Controls		Cla : General Co Special (ontrols and		Class III Seneral Controls and Premarket Approval
U.S.A.	FDA Classifi	General Controls Medical devices without the possik of causing serious injury or harm to the patient or user even if ther is a defect or malfunction in such medical devices		Medical devices with the possibility of causing injury or harm to the patient or user if there is a defect or malfunction in such medical devices		of causir or death	devices with the possibility g serious injury, disability to the patient or user if a r malfunction occurs in such devices

Coverage of those Classes by TAIYO YUDEN Products

Product Series for Medical Devices

*Note: It is prohibited that our products are used in some medical devices such as implantable medical devices even if such medical devices are classified as GHTF Class C (Japan Class III).


N/A

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

MULTILAYER CERAMIC CAPACITORS

REFLOW AEC-Q200

■PART NUMBER

1 Rated voltage

Code	Rated voltage[VDC]
Α	4
J	6.3
L	10
E	16
Т	25
G	35
U	50
Н	100
Q	250
S	630

_	
2)Series	

Code	Series name
М	Multilayer ceramic capacitor
V	Multilayer ceramic capacitor for high frequency
W	LW reverse type multilayer capacitor

3End termination

Code	End termination			
K	Plated			
J	Soft Termination			
S	Cu Internal Electrodes (For High Frequency)			
F	High Reliability Application			
R	High Reliability Application			
	(Cu External Electrodes)			

△=Blank space

4 Dimension (L × W)

O=	,	
Type	Dimensions (L×W)[mm]	EIA (inch)
063	0.6 × 0.3	0201
105	1.0 × 0.5	0402
105	0.52 × 1.0 💥	0204
107	1.6 × 0.8	0603
107	0.8 × 1.6 💥	0306
212	2.0 × 1.25	0805
212	1.25 × 2.0 💥	0508
316	3.2 × 1.6	1206
325	3.2 × 2.5	1210
432	4.5 × 3.2	1812
	/	

Note: ※LW reverse type(□WK) only

⑤Dimension tolerance

Code	Туре	L[mm]	W[mm]	T[mm]
Δ	ALL	Standard	Standard	Standard
	063	0.6±0.05	0.3±0.05	0.3±0.05
	105	1.0±0.10	0.5±0.10	0.5±0.10
	107	1.6+0.15/-0.05	0.8+0.15/-0.05	0.8+0.15/-0.05
Α	212	2.0+0.15/-0.05	1.25+0.15/-0.05	0.85±0.10
	212	2.0+0.15/-0.05	1.25 + 0.15/ - 0.05	1.25+0.15/-0.05
	316	3.2±0.20	1.6±0.20	1.6±0.20
	325	3.2±0.30	2.5±0.30	2.5±0.30
	105	1.0+0.15/-0.05	0.5+0.15/-0.05	0.5+0.15/-0.05
	107	1.6+0.20/-0	0.8+0.20/-0	0.8+0.20/-0
В	212	2.0+0.20/-0	1.25+0.20/-0	0.85±0.10
				1.25+0.20/-0
	316	3.2±0.30	1.6±0.30	1.6±0.30
	105	1.0+0.20/-0	0.5+0.20/-0	0.5+0.20/-0
С	107	1.6+0.25/-0	0.8+0.25/-0	0.8+0.25/-0
	212	2.0+0.25/-0	1.25+0.25/-0	1.25+0.25/-0
	212	2.0±0.15	1.25±0.15	0.85±0.15
K	216	201000	1.0.1.0.00	1.15±0.20
N.	316	3.2±0.20	1.6±0.20	1.6±0.20
	325	3.2±0.50	2.5±0.30	2.5±0.30

Note: cf. STANDARD EXTERNAL DIMENSIONS

Δ= Blank space

©Temperature characteristics code

■High dielectric type

Code		cable dard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code
BJ	EIA	X5R	-55 ~ + 85	25	±15%	±10%	K
БЈ	EIA	ASK	-55~+ 85	25	王13%	±20%	М
C6	EIA	X6S	-55~+105	25	±22%	±10%	K
	EIA	703	-55° - 7105	25	±20%	М	
В7	EIA	X7R	-55~+125	25	±15%	±10%	K
Б/	EIA	Λ/Κ	-557-4-125	25 ±15%	±20%	М	
C7	EIA	X7S	-55~+125	25	±22%	±10%	K
07	EIA	A/3	-557-4-125	25 ±22%	±20%	М	
D7 EIA X	EIA X7T −55~+125	25	+22%/-33%	±10%	K		
D7 EIA				±20%	М		

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

Tolerance

code

В

С

D

F

G

J

Nominal capacitance

Code

CG

■Temperature compensating type

Applicable

standard

CG

COG

JIS

ΕIΑ

Temperature

range[°C]

-55~+125

Ref. Temp.[°C]

20

25

Code (example)	Nominal capacitance
0R5	0.5pF
010	1pF
100	10pF
101	100pF
102	1,000pF
103	0.01 μ F
104	0.1 μ F
105	1.0 <i>μ</i> F
106	10 μ F
107	100 μ F

Note : R=Decimal point

®Capacitance tolerance

Code	Capacitance tolerance		
Α	±0.05pF		
В	±0.1pF		
С	±0.25pF		
D	±0.5pF		
G	±2%		
J	±5%		
K	±10%		
М	±20%		

Thickness

Capacitance change

 0 ± 30 ppm/°C

Code	Thickness[mm]
Р	0.3
Т	0.3
V	0.5
С	0.7(107type or more)
Α	0.8
D	0.85(212type or more)
F	1.15
G	1.25
L	1.6
N	1.9
M	2.5

Capacitance

tolerance

 $\pm 0.1 pF$

±0.25pF ±0.5pF

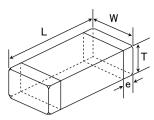
±1pF

±2%

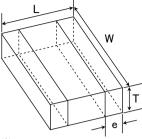
±5%

10Special code

Code	Special code
-	Standard
Н	MLCC for Automotive
8	MLCC for Telecommunications infrastructure and Industrial equipment / Medical devices


①Packaging

Code	Packaging
F	ϕ 178mm Taping (2mm pitch)
R	ϕ 178mm Embossed Taping (4mm pitch)
Т	ϕ 178mm Taping (4mm pitch)
	ϕ 178mm Taping (4mm pitch, 1000 pcs/reel)
Р	325 type (Thickness code M)


12Internal code

Eliterial code	
Code	Internal code
Δ	Standard

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

STANDARD EXTERNAL DIMENSIONS

※ LW reverse type

Type(EIA)		Dime	nsion [mm] (inch)			
Type(EIA)	L	W	T	*1	е	
□MK063(0201)	0.6±0.03	0.3±0.03	0.3±0.03	Т	0.15±0.05	
	(0.024±0.001)	(0.012±0.001)	(0.012±0.001)	<u> </u>	(0.006±0.002)	
☐MK105(0402)	1.0±0.05	0.5±0.05	0.5±0.05	V	0.25±0.10	
□MF105(0402)	(0.039±0.002)	(0.020 ± 0.002)	(0.020±0.002)		(0.010±0.004)	
□WK105(0204)※	0.52±0.05 (0.020±0.002)	1.0±0.05 (0.039±0.002)	0.3±0.05 (0.012±0.002)	Р	0.18±0.08 (0.007±0.003)	
□MK107(0603)	1.6±0.10	0.039±0.002)	0.012±0.002)		0.35±0.25	
□MF107(0603)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031 ± 0.004)	Α	(0.014 ± 0.010)	
	1.6±0.10	0.8±0.10	0.8±0.10		0.35+0.3/-0.25	
□MJ107(0603)	(0.063±0.004)	(0.031 ± 0.004)	(0.031 ± 0.004)	Α	(0.014+0.012/-0.010)	
	1.6±0.10	0.8±0.10	0.7±0.10		0.35±0.25	
□VS107(0603)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.028 ± 0.004)	С	(0.014 ± 0.010)	
□WK107(0206) ₩	0.8±0.10	1.6±0.10	0.5±0.05	V	0.25±0.15	
□WK107(0306)※	(0.031 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	V	(0.010 ± 0.006)	
			0.85±0.10	D		
□MK212(0805)	2.0±0.10	1.25±0.10	(0.033 ± 0.004)		0.5±0.25	
□MF212(0805)	(0.079 ± 0.004)	(0.049 ± 0.004)	1.25±0.10	G	(0.020 ± 0.010)	
			(0.049 ± 0.004)			
	001010	4.05 4.040	0.85±0.10	D	051005/ 005	
□MJ212(0805)	2.0±0.10 (0.079±0.004)	1.25±0.10 (0.049±0.004)	(0.033±0.004) 1.25±0.10		0.5 + 0.35 / -0.25 (0.020 + 0.014 / -0.010)	
	(0.079±0.004)	(0.049±0.004)	(0.049 ± 0.004)	G	(0.020+0.014/-0.010)	
	2.0±0.10	1.25±0.10	0.85±0.10		0.5±0.25	
□VS212(0805)	(0.079 ± 0.004)	(0.049 ± 0.004)	(0.033 ± 0.004)	D	(0.020 ± 0.010)	
	1.25±0.15	2.0±0.15	0.85±0.10	<u> </u>	0.3±0.2	
□WK212(0508)※	(0.049 ± 0.006)	(0.079 ± 0.006)	(0.033 ± 0.004)	D	(0.012 ± 0.008)	
			1.15±0.10	F		
□MK316(1206)	3.2±0.15	1.6±0.15	(0.045 ± 0.004)	-	0.5 + 0.35 / -0.25	
□MF316(1206)	(0.126 ± 0.006)	(0.063 ± 0.006)	1.6±0.20	L	(0.020 + 0.014 / -0.010)	
			(0.063 ± 0.008)			
			1.15±0.10	F		
□MJ316(1206)	3.2±0.15	1.6±0.15	(0.045 ± 0.004)	<u>'</u>	0.6 + 0.4 / -0.3	
	(0.126 ± 0.006)	(0.063 ± 0.006)	1.6±0.20	L	(0.024 + 0.016 / -0.012)	
			(0.063 ± 0.008)			
			1.15±0.10	F		
[]NI(005(4040)	001000	0.5.1.0.00	(0.045±0.004)	ļ	00100	
□MK325(1210) □MF325(1210)	3.2±0.30 (0.126±0.012)	2.5±0.20 (0.098±0.008)	1.9±0.20 (0.075±0.008)	N	0.6±0.3 (0.024±0.012)	
□WF323(1210)	(0.120±0.012)	(0.096 ± 0.006)	2.5±0.20		(0.024±0.012)	
			(0.098 ± 0.008)	М		
			1.9±0.20			
ΠΜ 1005 (4040)	3.2±0.30	2.5±0.20	(0.075±0.008)	N	0.6+0.4/-0.3	
□MJ325(1210)	(0.126 ± 0.012)	(0.098 ± 0.008)	2.5±0.20		(0.024 + 0.016 / -0.012)	
			(0.098 ± 0.008)	М	1 (1102) (11010)	
□MK432(1812)	4.5±0.40	3.2±0.30	2.5±0.20	м	0.9±0.6	
□WIN432(1012)	(0.177 ± 0.016)	(0.126 ± 0.012)	(0.098 ± 0.008)	IVI	(0.035 ± 0.024)	

 (0.177 ± 0.016) Note: X. LW reverse type, *1.Thickness code (0.035 ± 0.024)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

Туре	EIA (inch)	Dimer	nsion	Standard qu	uantity[pcs]
туре	EIA (Inch)	[mm]	Code	Paper tape	Embossed tape
063	0201	0.3	Т	15000	_
105	0402	0.5	V	10000	
105	0204 ※	0.30	Р	15000 — 10000 — 10000 — 4000 — 3000 (Soft Termination) — 4000 — 4000 — 4000 — 3000 (Soft Termination) — 4000 — 4000 — 3000 (Soft Termination) — 4000 — 2000 (Soft Termination) — 4000 — 2000	
		0.7	С	4000	
		0.8	Α	4000	_
107	0603	0.8	А		_
		0.8	А	_	
	0306 ※	0.50	V	_	4000
		0.85	D	4000	_
	0805	1.25	G	_	3000
212	0803	1.25	G	_	
	0508 ※	0.85	D	4000	_
316	1206	1.15	F	_	3000
310	1200	1.6	L	_	2000
		1.15	F		2000
325	1210	1.9	N	_	2000
		2.5	A V D G G D F L F	_	500(T), 1000(P)
432	1812	2.5	М	_	500

Note: ※.LW Reverse type(□WK)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

INDL

for High Quality Equipment

- · All the Multilayer Ceramic Capacitors of the catalog lineup are RoHS compliant.
- Capacitance tolerance code is applied to ☐ of part number.
- All the Multilayer Ceramic Capacitors in the catalog lineup are applicable for reflow-soldering.

Notes)

- * The exchange of individual specifications is necessary depending on your application and/or circuit condition. Please contact TAIYO YUDEN's official sales channel.
- The products are for Telecommunications infrastructure and Industrial equipment and for Medical devices.
 Please consult with TAIYO YUDEN's official sales channel for the details of the product specifications, etc.,
 and please review and approve the product specifications before ordering.
- Please be sure to contact us for further information in advance when the products are used for automotive electronic equipment.
- *1: For standard case size, please kindly refer to @Dimension, @Dimension tolerance, @Thickness and STANDARD EXTERNAL DIMENSIONS.

Multilayer Ceramic Capacitors (High dielectric type)

●063TYPE (Demension:0.6 × 0.3mm JIS:1005 EIA:0402)

[Temperature Characteristic B7 : X7R($-55 \sim +125^{\circ}$ C)] 0.3mm thickness(P)

Part number 1 Part number 2		Rated voltage	Tempe	rature	Capacitance	Capacitance	tan δ	HTLT	*1.5.3	
Part number 1	Part number 2	[V]	charact		[F]	tolerance [%]	[%]	Rated voltage x %	Thickness*1 [mm]	Note
TMK063 B7101∏P8FE				X7R	100 p	±10, ±20	3.5	200	0.3±0.03	
TMK063 B7151∏P8FE				X7R	150 p	±10, ±20	3.5	200	0.3 ± 0.03	
TMK063 B7221∏P8FE				X7R	220 p	±10, ±20	3.5	200	0.3 ± 0.03	
TMK063 B7331 ☐P8FE				X7R	330 p	±10, ±20	3.5	200	0.3 ± 0.03	
TMK063 B7471 P8FE		25		X7R	470 p	±10, ±20	3.5	200	0.3 ± 0.03	
TMK063 B7102∏P8FE				X7R	1000 p	±10, ±20	5	200	0.3 ± 0.03	
TMK063 B7152[]P8FE				X7R	1500 p	±10, ±20	5	200	0.3 ± 0.03	
TMK063 B7222 P8FE				X7R	2200 p	±10, ±20	5	200	0.3 ± 0.03	
TMK063 B7332∏P8FE				X7R	3300 р	±10, ±20	5	200	0.3 ± 0.03	
EMK063 B7101 P8FE				X7R	100 p	±10, ±20	3.5	200	0.3 ± 0.03	
EMK063 B7151∏P8FE				X7R	150 p	±10, ±20	3.5	200	0.3 ± 0.03	
EMK063 B7221 ☐ P8FE				X7R	220 p	±10, ±20	3.5	200	0.3 ± 0.03	
EMK063 B7331 ☐P8FE				X7R	330 р	±10, ±20	3.5	200	0.3 ± 0.03	
EMK063 B7471∏P8FE		16		X7R	470 p	±10, ±20	3.5	200	0.3 ± 0.03	
EMK063 B7102∏P8FE				X7R	1000 p	±10, ±20	5	200	0.3 ± 0.03	
EMK063 B7152 P8FE				X7R	1500 p	±10, ±20	5	200	0.3 ± 0.03	
EMK063 B7222 P8FE				X7R	2200 p	±10, ±20	5	200	0.3 ± 0.03	
EMK063 B7332∏P8FE				X7R	3300 р	±10, ±20	5	200	0.3 ± 0.03	
LMK063 B7101 P8FE				X7R	100 p	±10, ±20	3.5	200	0.3 ± 0.03	
LMK063 B7151∏P8FE				X7R	150 p	±10, ±20	3.5	200	0.3 ± 0.03	
LMK063 B7221 ☐ P8FE				X7R	220 p	±10, ±20	3.5	200	0.3 ± 0.03	
LMK063 B7331 ☐P8FE				X7R	330 р	±10, ±20	3.5	200	0.3 ± 0.03	
LMK063 B7471 P8FE				X7R	470 p	±10, ±20	3.5	200	0.3±0.03	
LMK063 B7102□P8FE		10		X7R	1000 p	±10, ±20	5	200	0.3±0.03	
LMK063 B7152□P8FE		10		X7R	1500 p	±10, ±20	5	200	0.3±0.03	
LMK063 B7222□P8FE				X7R	2200 p	±10, ±20	5	200	0.3±0.03	
LMK063 B7332∏P8FE		1		X7R	3300 р	±10, ±20	5	200	0.3±0.03	
LMK063 B7472∏P8FE		1		X7R	4700 p	±10, ±20	5	200	0.3±0.03	
LMK063 B7682∏P8FE		1		X7R	6800 p	±10, ±20	5	200	0.3±0.03	
LMK063 B7103∏P8FE		1		X7R	10000 p	±10, ±20	5	200	0.3±0.03	

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

INDL

[Temperature Characteristic BJ : $X5R(-55 \sim +85^{\circ}C)$] 0.5mm thickness(V)

Part number 1	Part number 2	Rated voltage [V]	Tempera character		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness*1 [mm]	Note
UMK105 BJ471 □V8F				X5R	470 p	±10, ±20	2.5	200	0.5 ± 0.05	
UMK105 BJ102 V8F				X5R	1000 p	±10, ±20	2.5	200	0.5 ± 0.05	
UMK105 BJ152 V8F				X5R	1500 p	±10, ±20	2.5	200	0.5±0.05	
UMK105 BJ222 U8F				X5R	2200 p	±10, ±20	2.5	200	0.5±0.05	
UMK105 BJ332 ŪV8F				X5R	3300 p	±10, ±20	2.5	200	0.5±0.05	
UMK105 BJ472 V8F		50		X5R	4700 p	±10, ±20	2.5	200	0.5±0.05	
UMK105 BJ682 ŪV8F				X5R	6800 p	±10, ±20	2.5	150	0.5±0.05	
UMK105 BJ103[]V8F				X5R	0.01 μ	±10, ±20	3.5	200	0.5±0.05	
UMK105 BJ223[V8F				X5R	0.022 μ	±10, ±20	5	200	0.5±0.05	
UMK105 BJ473[V8F				X5R	0.047 μ	±10, ±20	5	200	0.5±0.05	
UMK105 BJ104[]V8F				X5R	0.1 μ	±10, ±20	10	150	0.5±0.05	
TMK105 BJ472 U8F				X5R	4700 p	±10, ±20	2.5	200	0.5±0.05	
TMK105 BJ682 U8F				X5R	6800 p	±10, ±20	2.5	200	0.5 ± 0.05	
TMK105 BJ103 U8F				X5R	0.01 μ	±10, ±20	3.5	200	0.5 ± 0.05	
TMK105 BJ153 V8F				X5R	0.015 μ	±10, ±20	3.5	200	0.5 ± 0.05	
TMK105 BJ223 V8F		25		X5R	0.022 μ	±10, ±20	3.5	200	0.5 ± 0.05	
TMK105 BJ333 □V8F		2.5		X5R	0.033 μ	±10, ±20	3.5	150	0.5 ± 0.05	
TMK105 BJ473 V8F				X5R	0.047 μ	±10, ±20	3.5	150	0.5 ± 0.05	
TMK105 BJ104 V8F				X5R	0.1 μ	±10, ±20	5	150	0.5 ± 0.05	
TMK105 BJ224 V8F				X5R	0.22 μ	±10, ±20	10	150	0.5 ± 0.05	
TMK105ABJ474∏V8F				X5R	0.47 μ	±10, ±20	10	150	0.5 ± 0.10	
EMK105 BJ104 V8F				X5R	0.1 μ	±10, ±20	5	150	0.5 ± 0.05	
EMK105 BJ224 V8F		16		X5R	0.22 μ	$\pm 10, \pm 20$	10	150	0.5 ± 0.05	
EMK105ABJ474[]V8F		10		X5R	0.47 μ	±10, ±20	10	150	0.5±0.10	
EMK105 BJ105[]V8F				X5R	1 μ	$\pm 10, \pm 20$	10	150	0.5±0.05	
LMK105 BJ224 V8F				X5R	0.22 μ	$\pm 10, \pm 20$	5	150	0.5±0.05	
LMK105ABJ474[V8F		10		X5R	0.47 μ	±10, ±20	10	150	0.5±0.10	
LMK105 BJ105 V8F		10		X5R	1 μ	±10, ±20	10	150	0.5 ± 0.05	
LMK105ABJ225[]V8F				X5R	2.2 μ	±10, ±20	10	150	0.5 ± 0.10	
JMK105 BJ474 V8F				X5R	0.47 μ	$\pm 10, \pm 20$	10	150	0.5±0.05	
JMK105 BJ105 V8F		6.3		X5R	1 μ	±10, ±20	10	150	0.5 ± 0.05	
JMK105 BJ225 U8F		0.3		X5R	2.2 μ	±10, ±20	10	150	0.5±0.05	
JMK105BBJ475MV8F				X5R	4.7 μ	±20	10	150	0.5+0.15/-0.05	
AMK105 BJ225[]V8F		4		X5R	2.2 μ	±10, ±20	10	150	0.5 ± 0.05	
AMK105BBJ475MV8F		4		X5R	4.7 μ	±20	10	150	0.5+0.15/-0.05	

Temperature Charac	teristic B7 : X7R(-	$-55 \sim +125^{\circ}$	C), D7 : X	(7T(—	55~+125°C)]	0.5mm thicknes	s(V)			
Part number 1	Part number 2	Rated voltage	Tempera	ture	Capacitance	Capacitance	tan δ	HTLT	Thickness*1 [mm]	Note
Fart number 1	Fart Humber 2	[V]	character	ristics	[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	Note
MK105 B7221[V8F				X7R	220 p	±10, ±20	2.5	200	0.5±0.05	
MK105 B7331∏V8F				X7R	330 p	±10, ±20	2.5	200	0.5 ± 0.05	
MK105 B7471 ŪV8F				X7R	470 p	±10, ±20	2.5	200	0.5±0.05	
MK105 B7681∏V8F				X7R	680 p	±10, ±20	2.5	200	0.5±0.05	
MK105 B7102 V8F				X7R	1000 p	$\pm 10, \pm 20$	2.5	200	0.5±0.05	
MK105 B7152[V8F				X7R	1500 p	±10, ±20	2.5	200	0.5±0.05	
MK105 B7222 V8F				X7R	2200 p	±10, ±20	2.5	200	0.5±0.05	
MK105 B7332[V8F		50		X7R	3300 р	±10, ±20	2.5	200	0.5±0.05	
MK105 B7472[V8F		50		X7R	4700 p	±10, ±20	2.5	150	0.5±0.05	
MK105 B7682[V8F				X7R	6800 p	±10, ±20	2.5	150	0.5±0.05	
MK105 B7103∏V8F		1		X7R	0.01 μ	±10, ±20	3.5	150	0.5±0.05	
MK105 B7153[]V8FE		1		X7R	0.015 μ	±10, ±20	3.5	200	0.5±0.05	
MK105 B7223∏V8F				X7R	0.022 μ	±10, ±20	10	200	0.5±0.05	
MK105 B7333∏V8FE				X7R	0.033 μ	±10, ±20	3.5	150	0.5±0.05	
MK105 B7473∏V8F				X7R	0.047 μ	±10, ±20	10	200	0.5±0.05	
MK105 B7104∏V8F				X7R	0.1 μ	±10, ±20	10	150	0.5±0.05	
MK105 B7472 V8F				X7R	4700 p	±10, ±20	2.5	200	0.5±0.05	
MK105 B7682∏V8F				X7R	6800 p	±10, ±20	2.5	200	0.5±0.05	
MK105 B7103 V8F				X7R	0.01 μ	±10, ±20	3.5	200	0.5±0.05	
MK105 B7153 V8F				X7R	0.015 μ	±10, ±20	3.5	150	0.5±0.05	
MK105 B7223 V8F		25		X7R	0.022 μ	±10, ±20	3.5	150	0.5±0.05	
MK105 B7333 V8F		1		X7R	0.033 μ	±10, ±20	3.5	150	0.5±0.05	
MK105 B7473[]V8F		1		X7R	0.047 μ	±10, ±20	3.5	150	0.5±0.05	
MK105 B7104[]V8F				X7R	0.1 μ	±10, ±20	10	150	0.5±0.05	
MK105 B7103 V8F				X7R	0.01 μ	±10, ±20	3.5	200	0.5±0.05	
MK105 B7153 V8F				X7R	0.015 μ	±10, ±20	3.5	150	0.5±0.05	
MK105 B7223 V8F				X7R	0.022 μ	±10, ±20	3.5	150	0.5±0.05	
MK105 B7333 V8F		16		X7R	0.033 μ	±10, ±20	3.5	150	0.5±0.05	
MK105 B7473 V8F				X7R	0.047 μ	±10, ±20	3.5	150	0.5±0.05	
MK105 B7104∏V8F		1		X7R	0.1 μ	±10, ±20	5	150	0.5±0.05	
MK105 B7104 V8F		1		X7R	0.22 μ	±10, ±20	10	150	0.5±0.05	
MK105 B7473 V8F		+		X7R	0.047 μ	±10, ±20	3.5	150	0.5±0.05	
MK105 B7475 V8F		10		X7R	0.047 μ	±10, ±20	5.5	150	0.5±0.05	
MK105 B7104 V8F		- '°		X7R	0.1 μ	±10, ±20	10	150	0.5±0.05	
MK105 B7224 V8F				X7R	0.22 μ	±10, ±20	5	150	0.5±0.05	
MK105 B7104 V8F		1		X7R	0.1 μ	±10, ±20	10	150	0.5±0.05	
MK105 B7224 V8F		6.3	-	X7R X7R	0.22 μ	±10, ±20 ±10, ±20	10	150	0.5±0.05	
MK105 B7474 V8F MK105CD7105 V8F		┥ !	-	X7R X7T		±10, ±20 ±10, ±20	10	150	0.5±0.05 0.5+0.2/-0	
MK105CD7105UV8F		4	-	X/I X/R	1 μ	±10, ±20 ±10, ±20	10	150	0.5±0.2/=0 0.5±0.05	
487 ∏87474 CO1 AIM		4		A/R	0.47 μ	エ10, エ20	10	100	0.0 ± 0.00	

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

for High Quality Equipment

PART NUMBER

●107TYPE (Dimension:1.6 × 0.8mm JIS:1608 EIA:0603)

[Temperature Characteristic BJ : $X5R(-55\sim+85^{\circ}C)$] 0.8mm thickness(A)

Part number 1	Part number 2	Rated voltage	Temperature		Capacitance	Capacitance	tan δ	HTLT	Thickness*1 [mm]	Note
Part number 1	Part number 2	[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	14016
UMK107 BJ224 A8T				X5R	0.22 μ	±10, ±20	10	150	0.8±0.10	
UMK107 BJ474[A8T		50		X5R	0.47 μ	±10, ±20	10	150	0.8±0.10	
UMK107ABJ105[]A8T				X5R	1 μ	±10, ±20	10	150	0.8+0.15/-0.05	
GMK107 BJ224[]A8T				X5R	0.22 μ	±10, ±20	10	150	0.8±0.10	
GMK107ABJ474[A8T		35		X5R	0.47 μ	±10, ±20	10	150	0.8+0.15/-0.05	
GMK107 BJ105[]A8T				X5R	1 μ	±10, ±20	10	150	0.8±0.10	
TMK107 BJ224[]A8T				X5R	0.22 μ	±10, ±20	5	150	0.8±0.10	
TMK107 BJ474[]A8T		25		X5R	0.47 μ	±10, ±20	3.5	150	0.8±0.10	
TMK107 BJ105[A8T				X5R	1 μ	±10, ±20	10	150	0.8±0.10	
TMK107BBJ225[A8T				X5R	2.2 μ	±10, ±20	10	150	0.8+0.20/-0	
EMK107 BJ105∏A8T				X5R	1 μ	±10, ±20	5	150	0.8±0.10	
EMK107ABJ225∏A8T		16		X5R	2.2 μ	±10, ±20	10	150	0.8+0.15/-0.05	
EMK107BBJ475[A8T				X5R	4.7 μ	±10, ±20	10	150	0.8+0.20/-0	
LMK107 BJ225 A8T				X5R	2.2 μ	±10, ±20	10	150	0.8±0.10	
LMK107 BJ475 A8T		10		X5R	4.7 μ	±10, ±20	10	150	0.8±0.10	
LMK107BBJ106MA8T				X5R	10 μ	±20	10	150	0.8+0.20/-0	
JMK107 BJ475∏A8T		6.3		X5R	4.7 μ	±10, ±20	10	150	0.8±0.10	
JMK107ABJ106[]A8T		0.3		X5R	10 μ	±10, ±20	10	150	0.8+0.15/-0.05	
AMK107ABJ106[A8T		4		X5R	10 μ	±10, ±20	10	150	0.8+0.15/-0.05	
AMK107BBJ226MA8T		4		X5R	22 μ	±20	10	150	0.8+0.20/-0	

[Temperature Characteristic B7 : X7R($-55 \sim +125^{\circ}$ C), C7 : X7S($-55 \sim +125^{\circ}$ C), D7 : X7T($-55 \sim +125^{\circ}$ C)] 0.8mm thickness(A)

Part number 1	Part number 2	Rated voltage	Tempe	erature	Capacitance	Capacitance	tan δ	HTLT	Thickness*1 [mm]	Note
Part number I		[V]	characteristics		[F]	tolerance [%]	[%]	Rated voltage x %		Note
UMK107AC7154∏A8TE		50		X7S	0.15 μ	±10, ±20	3.5	150	0.8+0.15/-0.05	
UMK107 C7224∏A8TE		30		X7S	0.22 μ	±10, ±20	3.5	150	0.8±0.10	
GMK107 B7224∏A8T				X7R	0.22 μ	±10, ±20	10	150	0.8±0.10	
GMK107 B7474∏A8T		35		X7R	0.47 μ	±10, ±20	10	150	0.8±0.10	
GMK107AB7105∏A8T				X7R	1 μ	±10, ±20	10	150	0.8+0.15/-0.05	
MK107 B7224∏A8T				X7R	0.22 μ	±10, ±20	10	150	0.8±0.10	
MK107 B7474[]A8T		25		X7R	0.47 μ	±10, ±20	10	150	0.8±0.10	
™K107AB7105∏A8T				X7R	1 μ	±10, ±20	10	150	0.8+0.15/-0.05	
MK107 B7224∏A8T				X7R	0.22 μ	±10, ±20	5	150	0.8±0.10	
MK107 B7474∏A8T		16		X7R	0.47 μ	±10, ±20	10	150	0.8±0.10	
MK107 B7105∏A8T				X7R	1 μ	±10, ±20	10	150	0.8±0.10	
MK107 B7474∏A8T				X7R	0.47 μ	±10, ±20	3.5	150	0.8±0.10	
_MK107 B7105∏A8T		10		X7R	1 μ	±10, ±20	10	150	0.8±0.10	
_MK107BD7225∏A8T		[X7T	2.2 μ	±10, ±20	10	200	0.8+0.20/-0	
IMK107 B7105∏A8T		6.3		X7R	1 μ	±10, ±20	10	150	0.8±0.10	
JMK107 B7225∏A8TR		0.3		X7R	2.2 μ	±10, ±20	10	150	0.8±0.10	

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

INDL

212TYPE (Dimension:2.0 × 1.25mm JIS:2012 EIA:0805)

[Temperature Characteristic BJ : $X5R(-55\sim+85^{\circ}C)$] 1.25mm thickness(G)

Part number 1	Part number 2	Rated voltage [V]	Tempe	rature	Capacitance	Capacitance	tan δ	HTLT	*1 r 3	Maka
Part number 1	Part number 2		characteristics		[F]	tolerance [%]	[%]	Rated voltage x %	Thickness*1 [mm]	Note
UMK212 BJ474[G8T		50		X5R	0.47 μ	±10, ±20	3.5	150	1.25±0.10	
UMK212 BJ105[G8T		50		X5R	1 μ	±10, ±20	5	150	1.25±0.10	
GMK212 BJ105 G8T		35		X5R	1 μ	±10, ±20	5	150	1.25±0.10	
GMK212BBJ225[]G8T		33		X5R	2.2 μ	±10, ±20	10	150	1.25+0.20/-0	
TMK212 BJ225[]G8T				X5R	2.2 μ	±10, ±20	5	150	1.25±0.10	
TMK212BBJ475 G8T		25		X5R	4.7 μ	±10, ±20	10	150	1.25+0.20/-0	
TMK212BBJ106∏G8T				X5R	10 μ	±10, ±20	10	150	1.25+0.20/-0	
EMK212 BJ225 G8T				X5R	2.2 μ	±10, ±20	5	150	1.25±0.10	
EMK212ABJ475[]G8T		16		X5R	4.7 μ	±10, ±20	10	150	1.25+0.15/-0.05	
EMK212BBJ106 G8T				X5R	10 μ	±10, ±20	10	150	1.25+0.20/-0	
LMK212ABJ475[G8T		10		X5R	4.7 μ	±10, ±20	10	150	1.25+0.15/-0.05	
LMK212ABJ106 G8T		10		X5R	10 μ	±10, ±20	10	150	1.25+0.15/-0.05	
JMK212ABJ106 G8T		6.3		X5R	10 μ	±10, ±20	10	150	1.25+0.15/-0.05	
JMK212BBJ226MG8T		0.3		X5R	22 μ	±20	10	150	1.25+0.20/-0	
AMK212BBJ476MG8T		4		X5R	47 μ	±20	10	150	1.25+0.20/-0	

[Temperature Characteristic BJ : $X5R(-55 \sim +85^{\circ}C)$] 0.85mm thickness(D)

Part number 1	Part number 2	Rated voltage [V]	erature eristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness*1 [mm]	Note
EMK212ABJ225[]D8T		16	X5R	2.2 μ	±10, ±20	5	150	0.85±0.10	<u>.</u>
EMK212BBJ475[]D8T		10	X5R	4.7 μ	±10, ±20	10	150	0.85±0.10	

【Temperature Characteristic B7 : X7R(−55~+125°C)】 1.25mm thickness(G)

Part number 1	Part number 2	Rated voltage	Tempe		Capacitance	Capacitance	tan δ	HTLT	Thickness*1 [mm]	Note
T di c Hallioor 1	T di C Hambor E	[V]	characteristics		[F]	tolerance [%]	[%]	Rated voltage x %	THICKINGS [IIIII]	11000
UMK212 B7473 G8T				X7R	0.047 μ	±10, ±20	3.5	200	1.25±0.10	
UMK212 B7683 G8T				X7R	0.068 μ	±10, ±20	3.5	200	1.25±0.10	
UMK212 B7104 G8T				X7R	0.1 μ	±10, ±20	3.5	200	1.25±0.10	
UMK212BB7154 G8TE				X7R	0.15 μ	±10, ±20	3.5	200	1.25+0.20/-0	
UMK212 B7224 G8T		50		X7R	0.22 μ	±10, ±20	3.5	150	1.25±0.10	
UMK212BC7334[]G8TE				X7S	0.33 μ	±10, ±20	3.5	150	1.25+0.20/-0	
UMK212 C7474 G8TE				X7S	0.47 μ	±10, ±20	3.5	150	1.25±0.10	
UMK212CC7684[]G8TE				X7S	0.68 μ	±10, ±20	3.5	150	1.25+0.25/-0	
UMK212 B7105 G8T				X7R	1 μ	±10, ±20	10	150	1.25±0.10	
GMK212 B7105 G8T		35		X7R	1 μ	±10, ±20	10	150	1.25±0.10	
TMK212 B7474 G8T				X7R	0.47 μ	±10, ±20	3.5	150	1.25±0.10	
TMK212 B7105 G8TR		25		X7R	1 μ	±10, ±20	10	150	1.25±0.10	
TMK212 B7225 G8T				X7R	2.2 μ	±10, ±20	10	150	1.25±0.10	
EMK212 B7105 G8TR				X7R	1 μ	±10, ±20	10	150	1.25±0.10	
EMK212 B7225∏G8T		16		X7R	2.2 μ	±10, ±20	10	150	1.25±0.10	
EMK212AB7475∏G8T				X7R	4.7 μ	±10, ±20	10	150	1.25+0.15/-0.05	
LMK212 B7225 G8T		10		X7R	2.2 μ	±10, ±20	10	150	1.25±0.10	•
LMK212 B7475∏G8T		10		X7R	4.7 μ	±10, ±20	10	150	1.25±0.10	•
JMK212 B7475∏G8T		6.3		X7R	4.7 μ	±10, ±20	10	150	1.25±0.10	
JMK212AB7106 ☐ G8T		0.3		X7R	10 μ	±10, ±20	10	150	1.25+0.15/-0.05	

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

INDL

■316TYPE (Dimension:3.2 × 1.6mm JIS:3216 EIA:1206)

for High Quality Equipment

[Temperature Characteristic BJ : $X5R(-55\sim+85^{\circ}C)$] 1.6mm thickness(L)

Part number 1	Part number 2	Rated voltage [V]	Temperature characteristics		Capacitance	Capacitance	tan δ	HTLT	Thickness*1 [mm]	Note
Part number 1	Tarc number 2				[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	Note
UMK316 BJ225 L8T		50		X5R	2.2 μ	±10, ±20	10	150	1.6±0.20	
UMK316ABJ475[L8T		50		X5R	4.7 μ	±10, ±20	10	150	1.6±0.20	
GMK316 BJ225[L8T				X5R	2.2 μ	±10, ±20	10	150	1.6±0.20	
GMK316 BJ475[L8T		35		X5R	4.7 μ	±10, ±20	10	150	1.6±0.20	
GMK316BBJ106[L8T				X5R	10 μ	±10, ±20	10	150	1.6±0.30	
TMK316 BJ475[L8T		25		X5R	4.7 μ	±10, ±20	5	150	1.6±0.20	
TMK316 BJ106□L8T		23		X5R	10 μ	±10, ±20	5	150	1.6±0.20	
EMK316 BJ475[L8T				X5R	4.7 μ	±10, ±20	5	150	1.6±0.20	
EMK316 BJ106 L8T		16		X5R	10 μ	±10, ±20	5	150	1.6±0.20	
EMK316BBJ226ML8T				X5R	22 μ	±20	10	150	1.6±0.30	
LMK316ABJ226 L8T		10		X5R	22 μ	±10, ±20	10	150	1.6±0.20	
JMK316ABJ476ML8T		6.3		X5R	47 μ	±20	10	150	1.6±0.20	
JMK316BBJ107ML8T		0.3		X5R	100 μ	±20	10	150	1.6±0.30	
AMK316ABJ107ML8T		4		X5R	100 μ	±20	10	150	1.6±0.20	

【Temperature Characteristic B7 : X7R(−55~+125°C), C7 : X7S(−55~+125°C)】 1.6mm thickness(L)

Part number 1	Part number 2	Rated voltage	Temper	rature	Capacitance	Capacitance	tan δ	HTLT	Thickness*1 [mm]	Note
Part number 1	Fart number 2	[V]	characte	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	Note
UMK316 B7105□L8T				X7R	1 μ	±10, ±20	3.5	200	1.6±0.20	
UMK316BC7155[L8TE		50		X7S	1.5 μ	±10, ±20	3.5	150	1.6±0.30	
UMK316 B7225□L8T		30		X7R	2.2 μ	$\pm 10, \pm 20$	10	150	1.6±0.20	
UMK316AC7475 L8TE				X7S	4.7 μ	$\pm 10, \pm 20$	2.5	150	1.6±0.20	
GMK316 B7225 L8T		35		X7R	2.2 μ	$\pm 10, \pm 20$	10	150	1.6±0.20	
GMK316AB7475 L8T		33		X7R	4.7 μ	$\pm 10, \pm 20$	10	150	1.6±0.20	
TMK316AB7475□L8T		25		X7R	4.7 μ	$\pm 10, \pm 20$	10	150	1.6±0.20	
TMK316AB7106□L8T		23		X7R	10 μ	$\pm 10, \pm 20$	10	150	1.6±0.20	
EMK316AB7475□L8T		16		X7R	4.7 μ	±10, ±20	10	150	1.6±0.20	
EMK316AB7106□L8T		10		X7R	10 μ	±10, ±20	10	150	1.6±0.20	
LMK316AB7106□L8T		10		X7R	10 μ	±10, ±20	10	150	1.6±0.20	<u>.</u>
JMK316AB7226□L8T		6.3		X7R	22 μ	±10, ±20	10	150	1.6±0.20	
AMK316AB7226□L8T		4		X7R	22 μ	±10, ±20	10	150	1.6±0.20	<u>.</u>
AMK316AC7476ML8T		4		X7S	47 μ	±20	10	150	1.6±0.20	

325TYPE (Dimension:3.2 × 2.5mm JIS:3225 EIA:1210)

[Temperature Characteristic BJ : $X5R(-55 \sim +85^{\circ}C)$] 2.5mm thickness(M)

Part number 1	Part number 2	Rated voltage [V]	erature eristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness*1 [mm]	Note
UMK325 BJ106 M8P		50	X5R	10 μ	±10, ±20	5	150	2.5±0.20	
EMK325ABJ476□M8P		16	X5R	47 μ	±10, ±20	10	150	2.5±0.30	
LMK325 BJ476 M8P		10	X5R	47 μ	±10, ±20	10	150	2.5±0.20	
LMK325ABJ107MM8P		10	X5R	100 μ	±20	10	150	2.5±0.30	
AMK325ABJ227MM8P		4	X5R	220 μ	±20	10	150	2.5±0.30	

Part number 1	Part number 2	Rated voltage [V]	Tempe charact	erature eristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness*1 [mm]	Note	
JMK325AC6107MM8P		6.3		X6S	100 μ	±20	10	150	2.5±0.30		

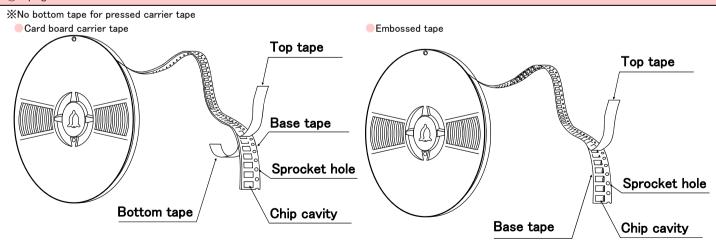
[Temperature Characteristic B7 : X7R($-55\sim+125^{\circ}$ C)] 2.5mm thickness(M)

Part number 1	Part number 2	Rated voltage [V]	Temperature characteristics		Capacitance	Capacitance	tan δ	HTLT	Thickness*1 [mm]	Note
	Fart number 2				[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	
UMK325 B7475 M8P		50		X7R	4.7 μ	±10, ±20	5	150	2.5 ± 0.20	
UMK325AB7106 M8P		30		X7R	10 μ	±10, ±20	10	150	2.5±0.30	
GMK325AB7106 M8P		35		X7R	10 μ	±10, ±20	10	150	2.5±0.30	
TMK325AB7106□M8PR		25		X7R	10 μ	±10, ±20	10	150	2.5±0.30	
TMK325 B7226 M8P		23		X7R	22 μ	±10, ±20	10	150	2.5±0.20	
EMK325 B7226 M8P		16		X7R	22 μ	±10, ±20	10	150	2.5±0.20	
LMK325 B7226 M8P		10		X7R	22 μ	±10, ±20	10	150	2.5±0.20	
JMK325 B7476[]M8PR		6.3		X7R	47 μ	±10, ±20	10	150	2.5±0.20	

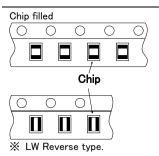
40

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

PACKAGING

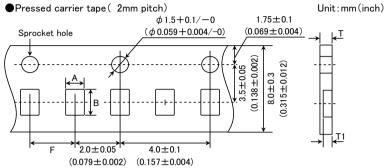

①Minimum Quantity

Ta	nad	nac	kage


Τ (ΓΙΛ)	Thic	kness	Standard of	quantity [pcs]
Type(EIA)	mm	code	Paper tape	Embossed tape
☐MK021(008004)	0.125	K		50000
□VS021(008004)	0.125			30000
☐MK042(01005)	0.2	C, D	_	40000
□VS042(01005)	0.2	С		40000
☐MK063(0201)	0.3	P,T	15000	_
□WK105(0204) ※	0.3	Р	10000	_
	0.13	Н	_	20000
Thurst 05(0400)	0.18	E	_	15000
☐MK105(0402)	0.2	С	20000	_
□MF105(0402)	0.3	Р	15000	_
	0.5	V	10000	_
□VK105(0402)	0.5	W	10000	_
□MK107(0603)	0.45	K	4000	_
□WK107(0306) ※	0.5	V	_	4000
☐MF107(0603)	0.8	Α	4000	_
□VS107(0603)	0.7	С	4000	_
□MJ107(0603)	0.8	Α	3000	3000
□MK212(0805)	0.45	К	4000	
□WK212(0508) ※	0.85	D	4000	_
□MF212(0805)	1.25	G	_	3000
□VS212(0805)	0.85	D	4000	_
	0.85	D	4000	_
□MJ212(0805)	1.25	G	_	2000
	0.85	D	4000	_
☐MK316(1206)	1.15	F	_	3000
□MF316(1206)	1.6	L	_	2000
	1.15	F	_	3000
□MJ316(1206)	1.6	L	_	2000
	0.85	D		
	1.15	F	 	
□MK325(1210) □MF325(1210)	1.9	N	 	2000
	2.0max.	Υ	7	
	2.5	М	_	1000
51.1005 (1010)	1.9	N	_	2000
□MJ325(1210)	2.5	М	_	500(T), 1000(P)
□MK432(1812)	2.5	М	_	500

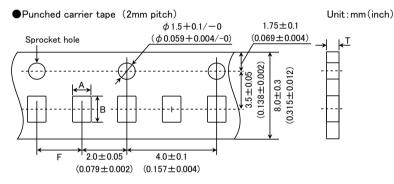
Note: 💥 LW Reverse type.

②Taping material

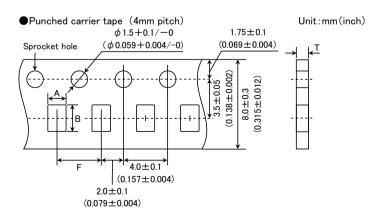


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

3 Representative taping dimensions


Paper Tape (8mm wide)

Type(EIA)	Chip	Cavity	Insertion Pitch	Tape Thickness		
Type(EIA)	Α	В	F	Т	T1	
☐MK063(0201)	0.37	0.67		0.45	0.40	
□WK105(0204) ※			2.0±0.05	0.45max.	0.42max.	
□MK105(0402) (*1 C)	0.65	1.15	2.0 ± 0.05	0.4max.	0.3max.	
□MK105(0402) (*1 P)				0.45max.	0.42max.	


Note *1 Thickness, C:0.2mm ,P:0.3mm. 💥 LW Reverse type.

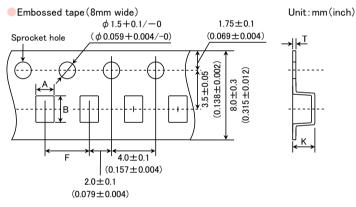
Unit:mm

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(EIA)	Α	В	F	Т
☐MK105 (0402)				
☐MF105 (0402)	0.65	1.15	2.0 ± 0.05	0.8max.
□VK105 (0402)				

Unit: mm

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Τ (ΓΙΔ)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(EIA)	Α	В	F	Т
□MK107(0603)				
□WK107(0306) ※	1.0	1.8		1.1max.
☐MF107(0603)			40101	
☐MK212(0805)	1.65	0.4	4.0±0.1	
□WK212(0508) ※	1.65	2.4		1.1max.
□MK316(1206)	2.0	3.6		

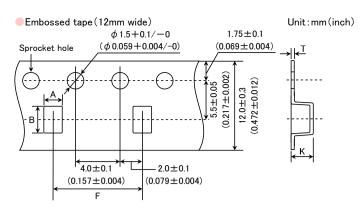

Note: Taping size might be different depending on the size of the product. X LW Reverse type.

Unit:mm

Embossed tape (4mm wide)			Unit:mm(inch)
	ϕ 0.8 \pm 0.04	0.9 ± 0.05	
Sprocket hole	$(\phi 0.031 \pm 0.002)$	(0.035 ± 0.002)	JLT
F 1.0±0.02 (0.039±0.001) (0	2.0±0.04 .079±0.002)	$\begin{array}{c} 1.8\pm0.02 \\ (0.071\pm0.001) \\ 4.0\pm0.05 \\ (0.157\pm0.002) \end{array}$	K

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Th	nickness
Type(EIA)	Α	В	F	K	Т
☐MK021(008004)	0.135	0.27			
□VS021(008004)	0.133	0.27	1.0±0.02	0.5max.	0.25max.
☐MK042(01005)	0.23	0.43	1.0±0.02	U.Smax.	0.25max.
□VS042(01005)	0.23	0.43			

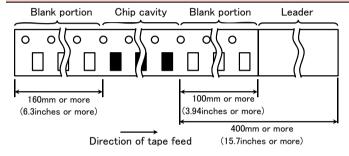
Unit:mm

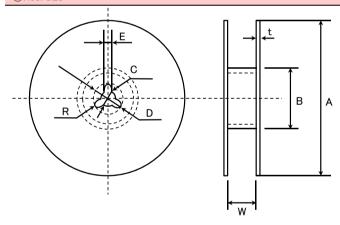

Type(EIA)	Chip	Chip Cavity		Tape Thickness	
Type(EIA)	Α	В	F	K	Т
☐MK105(0402)	0.6	1.1	2.0±0.1	0.6max	0.2±0.1
□WK107(0306) ※	1.0	1.8		1.3max.	0.25±0.1
☐MK212(0805) ☐MF212(0805)	1.65	2.4			
☐MK316(1206) ☐MF316(1206)	2.0	3.6	4.0±0.1	3.4max.	0.6max.
□MK325(1210) □MF325(1210)	2.8	3.6			

Note:

LW Reverse type.

Unit:mm

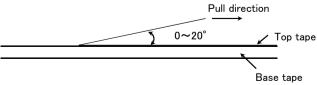

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).


Type(EIA)	Chip Cavity		Insertion Pitch	Tape Thickness	
Type(EIA)	Α	В	F	K	T
☐MK325(1210)	3.1	4.0	8.0±0.1	4.0max.	0.6max.
☐MK432(1812)	3.7	4.9	8.0±0.1	4.0max.	0.6max.

Unit:mm

4 Trailer and Leader

⑤Reel size


Α	В	С	D	E	R
ϕ 178±2.0	<i>ф</i> 50min.	ϕ 13.0 \pm 0.2	ϕ 21.0 ± 0.8	2.0±0.5	1.0

	T	W
4mm wide tape	1.5max.	5±1.0
8mm wide tape	2.5max.	10±1.5
12mm wide tape	2.5max.	14±1.5

Unit:mm

6Top Tape Strength

The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Multilayer Ceramic Capacitors

■RELIABILITY DATA

	Temperature Compensating(Class1)	Standard	I	-55 to +125°C		
		High Frequency Type	−55 to +	-125°C		
				Specification	Temperature Range	
			В	В	−25 to +85°C	
Specified			BJ	X5R	−55 to +85°C	
Value			В7	X7R	−55 to +125°C	
High Permittivity (Class2)	C6	X6S	−55 to +105°C		
			C7	X7S	−55 to +125°C	
			D7	X7T	−55 to +125°C	
			LD(※)	X5R	−55 to +85°C	
			Note: >	LD Low distortion	high value multilayer ceramic cap	
2. Storage Co	onditions					
	Temperature	Standard	−55 to +	10E°C		
	Compensating (Class 1)	High Frequency Type	-55 16 1	-125 C		
				Specification	Temperature Range	
			BJ	В	−25 to +85°C	
Specified			ы	X5R	−55 to +85°C	
pecineu						
√alue			B7	X7R	−55 to +125°C	

.3	Rated	Voltage	

0 15 1	Temperature	Standard	50VDC, 25VDC
Specified Value	Compensating (Class1)	High Frequency Type	50VDC, 25VDC
Value	High Permittivity (Class2))	50VDC, 35VDC, 25VDC, 16VDC, 10VDC, 6.3VDC, 4VDC, 2.5VDC

C6

C7

D7

LD(※)

X6S

X7S

X7T

X5R

-55 to +105°C

-55 to +125°C

-55 to +125°C

-55 to +85°C

Note: ** LD Low distortion high value multilayer ceramic capacitor

4. Withstanding Voltage	(Between terminals)
-------------------------	---------------------

High Permittivity (Class2)

	Temperature	Standard	
Specified Value	Compensating (Class1)	High Frequency Type	No breakdown or damage
Value	High Permittivity (Class2))	

T4		Class 1	Class 2
Test	Applied voltage	Rated volta × 3	Rated voltage × 2.5
Methods and Remarks	Duration	1 to 5	sec.
Remarks	Charge/discharge current	50mA	max.

5. Insulation Resistance

	Temperature	Standard	10000 MΩ min.
Specified	Compensating(Class1)	High Frequency Type	10000 MISS MILL
Value	High Permittivity (Class2)	Note 1	$C ≤ 0.047 \mu F : 10000 M \Omega $ min. $C > 0.047 \mu F : 500M \Omega \cdot \mu F$
Test	Applied voltage	: Rated voltage	
Methods and	Duration	: 60±5 sec.	
Remarks	Charge/discharge current	: 50mA max.	

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Capacitance	(Tolerance)						
Specified Value	Temperature Compensating (Class1)		C U SL	0.2pF≦C≦5pF 0.2pF≦C≦10pF C>10pF	: ±0.25pF : ±0.5pF : ±5% or ±10%		
	Compensating (Class I)	High Frequency Type	СН	0.3pF≦C≦2pF C>2pF	: ±0.1pF : ±5%		
	High Permittivity (Class2)			BJ, B7, C6, C7, D7, LD(※): ±10% or ±20% Note: ※LD Low distortion high value multilayer ceramic capacitor			
			Clas	ss 1	Cl	ass 2	
- .		Standard	Standard High Frequency Type		C≦10 <i>μ</i> F	C>10 μ F	
Test	Preconditioning		None		Thermal treatment (a	t 150°C for 1hr) Note 2	
Methods and Remarks	Measuring frequency		1MHz±10%		1kHz±10%	120±10Hz	
Remarks	Measuring voltage Note		0.5 to	5Vrms	1±0.2Vrms	0.5±0.1rms	
	Bias application			•	None	•	

Specified Value	Temperature		Standard		C < 30pF : Q ≥ 400 + 20C C ≥ 30pF : Q ≥ 1000 (C:Nominal capacitance)			
	Compensating (Class1)	High Frequency Type		Refer	to detailed specification			
	High Permittivity (Class2) Note 1			BJ, B7, C6, C7, D7:2.5% max.				
				Class 1		Class 2		
			Standard		High Frequency Type	C≦10 <i>μ</i> F	C>10 μ F	
	Preconditioning		None		Thermal treatment (at	150°C for 1hr) Note 2		
Test	Measuring frequey		1MHz±10%		1GHz	1kHz±10%	120±10Hz	
Methods and	Measuring voltage Note 1			0.5 to 5Vrms 1±0.2Vrms 0.5±0.1Vrms			0.5±0.1Vrms	
Remarks	Bias application			None				
	High Frequency Type							
	Measuring equipment	: HP	4291A					
	Measuring jig : HP16192A							

Specified Value		Standard	Tem	Temperature Characteristic [ppm/°C]			lerance [ppm/°C]
			C□:	0	CG,CH, CJ, (СК	G: ±30 H: ±60
	Temperature Compensating(Class1)		U□ :	- 750	UJ, UK		J: ±120 K: ±250
	Compensating (Glass 1)		SL :	+350 to −100	00	•	
		High Frequency Type	Tem	Temperature Character		C] To	lerance [ppm/°C]
			: C	0	CH		H: ±60
				Specification	Capacitance change	Reference temperature	Temperature Range
			BJ	В	±10%	20°C	−25 to +85°C
		Hirt Damestrick (Olares)		X5R	±15%	25°C	−55 to +85°C
	High Permittivity (Class2)			X7R	±15%	25°C	−55 to +125°C
	High Permittivity (Glassz)		C6	X6S	±22%	25°C	−55 to +105°C
				X7S	±22%	25°C	−55 to +125°C
			D7	X7S	+22/-33%	25°C	-55 to +125°C
			<i>D1</i>				
			LD(※)	X5R	±15%	25°C	−55 to +85°C

Class 1 : Capacitance at 20°C and 85°C shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation.

$$\frac{(C_{85}-C_{20})}{C_{20}\times\Delta T} \times 10^{6} (ppm/^{\circ}C) \qquad \Delta T = 65$$

Class 2: Capacitance at each step shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation.

Step	В	X5R, X7R, X6S, X7S, X7T			
1	Minimum operat	ng temperature			
2	20°C	25°C			
3	Maximum operating temperature				
(C-C ₀)					

× 100(%)

Test

Methods and Remarks

:Capacitance in Step 1 or Step 3

C2 : Capacitance in Step 2

Finis catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

9. Deflection				
	Temperature	Standard	Appearance Capacitance change	: No abnormality : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger.
Specified Value	Compensating(Class1) High Frequency		Appearance Cpaitance change	: No abnormality : Within±0.5 pF
Value	High Permittivity	(Class2)		: No abnormality : Within ±12.5%(BJ, B7, C6, C7, D7, LD(※)) ortion high value multilayer ceramic capacitor
		Multilayer Cera	mic Capacitors	20
		042, 063, **1105 Type	The other types	Board R-230 Warp
Test	Board	Glass epoxy-re	esin substrate	
Methods and	Thickness	0.8mm	1.6mm	
Remarks	Warp	1mm (Soft Termi	nation type:3mm)	(10±2)
	Duration	10 s	sec.	(Unit: mm)
		*1:105 Type thickness, C: 0	.2mm ,P: 0.3mm.	Capacitance measurement shall be conducted with the board bent

10. Body Stren	gth		
0 10 1	Temperature	Standard	-
Specified Value	Compensating (Class 1)	High Frequency Type	No mechanical damage.
	High Permittivity (Class2))	-
Test Methods and Remarks	High Frequency Type Applied force : 5N Duration : 10 sec.	Pres ← A →	Pressing jig Chip O.6A A

11. Adhesive St	trength of Terminal Elec	trodes					
0 15 1	Temperature	Standard					
Specified Value	Compensating (Class 1	High Frequency Type	No terminal separati	No terminal separation or its indication.			
- Value	High Permittivity (Cla	ass2)					
Test	Multilayer Ceram		nic Capacitors				
Methods and		042, 063 Type	105 Type or more				
Remarks	Applied force	2N	5N				
Remarks	Duration	30±5	sec.				

12. Solderability	У					
0 15 1	Temperature	Standard				
Specified Value	Compensating(Class1)	High Frequency Type	At least 95% of terminal electrode is covered		by new solder.	
- Value	High Permittivity (Class2))				
- .		Eutectic so	older	Lead-free solder		
Test Methods and	Solder type	H60A or H	63A	Sn-3.0Ag-0.5Cu		
Remarks	Solder temperature	230±5°	С	245±3°C		
Remarks	Duration		4±1 sec.			
	<u> </u>	·			-	

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

13. Resistance	to Soldering					
Specified Value	Temperature	Standard	Appearar Capacita Standard Q Insulation Withstan		: No abnormality : Within ±2.5% or ±0 : Initial value : Initial value (between terminals)	0.25pF, whichever is larger. : No abnormality
	Compensating (Class1)	High Frequency Type	Appearance : No abnormality Capacitancecange : Within ±2.5% Q : Initial value Insulation resistance : Initial value Withstanding voltage (between terminal)		: Within ±2.5% : Initial value	: No abnormality
	High Permittivity (Class2) Note 1			Appearance : No abormality		•
		Class 1				
		042, 063 Type			105 Type	
	Preconditioning		No			
	Preheating	150°C, 1 to 2 min.		80 to 100°C, 2 to 5 min. 150 to 200°C, 2 to 5 min.		
	Solder temp.		270±5°C			
	Duration		3±0.	5 sec.		
Test	Recovery	6 to 24 hrs	s (Standa	rd condition)	Noe 5	
Methods and	-					
Remarks					Class 2	
		042,063 Type		105,	107, 212 Type	316, 325 Type
	Preconditioning		Ther	mal treatment	(at 150°C for 1 hr) No	ote 2
	Preheating	150°C, 1 to 2 min.			00°C, 2 to 5 min. 00°C, 2 to 5 min.	80 to 100°C, 5 to 10 min. 150 to 200°C, 5 to 10 min.
	Solder temp.				270±5℃	
	Duration			3	±0.5 sec.	
	Recovery		2	4±2 hrs (Sta	ndard condition) Note	5
				*	•	<u> </u>

14. Temperatur	re Cycle (Thermal Shock)					
	Standard Temperature			Capacitance change : V Q : I Insulation resistance : I	No abnormality Vithin ±2.5% or ±0.25 nitial value nitial value petween terminals): N	pF, whichever is larger. o abnormality
Specified Value	Compensating (Class 1)	High Frequency Type		Appearance : No abnormality Capacitance change : Within ±0.25pF Q : Initial value Insulation resistance : Initial value Withstanding voltage (between terminals) : No abnormality		
	High Permittivity (Class2)			Capacitance change : W Dissipation factor : In Insulation resistance : In	lo abnormality /ithin ±7.5% (BJ, B7, nitial value nitial value etween terminals) : No high value multilayer co	o abnormality
			C	lass 1		Class 2
	Preconditioning			None	Thermal treat	tment (at 150°C for 1 hr) Note 2
Test Methods and Remarks	1 cycle		Step 1 2 3 4	Temperatur Minimum operating Normal temp Maximum operating Normal temp	ating temperature 30 ± 3 temperature 2 to 3 ating temperature 30 ± 3	
	Number of cycles				times	
	Recovery	6 to 24 hrs	(Stan	dard condition)Note 5	24±2 hrs (S	Standard condition)Note 5

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

15. Humidity(Steady State)					
	Temperature Compensating(Class1	Standard)	Appearance Capacitance change Q Insulation resistance	: No abnormality : Within $\pm 5\%$ or $\pm 0.5 pF$, whichever is larger. : $C < 10 pF$: $Q \ge 200 + 10 C$ $10 \le C < 30 pF$: $Q \ge 275 + 2.5 C$ $C \ge 30 pF$: $Q \ge 350 (C$: Nominal capacitance) : $1000 \ M\Omega$ min.		
Specified Value		High Frequency Type	Appearance Capacitance change Insulation resistance	No abnormality Within ±0.5pF, 1000 MΩ min.		
	High Permittivity (Cla	ss2) Note 1	Appearance : No abnormality Capacitance change : Within $\pm 12.5\%$ (BJ, B7, C6, C7, D7, LD($\%$)) Dissipation factor : 5.0% max.(BJ, B7, C6, C7, D7, LD($\%$)) Insulation resistance : 50 M Ω μ F or 1000 M Ω whichever is smaller. Note: $\%$ LD Low distortion high value multilayer ceramic capacitor			
		Cla	ass 1	Class 2		
		Standard	High Frequency Type			
Test	Preconditioning	N	lone	Thermal treatment (at 150°C for 1 hr) Note 2		
Methods and	Temperature	40±2°C	60±2°C	40±2°C		
Remarks	Humidity	90 to	95%RH	90 to 95%RH		
	Duration	500+2	4/-0 hrs	500+24/-0 hrs		
	Recovery	6 to 24 hrs (Stand	ard condition)Note 5	24±2 hrs (Standard condition) Note 5		

16. Humidity Lo	pading				
	Temperature Compensating (Class1)	Standard	Appearance Capacitance change Q Insulation resistance	: No abnormality : Within $\pm 7.5\%$ or ± 0.75 pF, whichever is larger. : C <30 pF:Q $\ge 100+10$ C/3 C ≥ 30 pF:Q ≥ 200 (C:Nominal capacitance) : 500 M Ω min.	
Specified Value	Compensating (Class)	High Frequency Type Capacitance change : C		: No abnormality $: C \leqq 2pF : \text{Within } \pm 0.4 \text{ pF} \\ C > 2pF : \text{Within } \pm 0.75 \text{ pF} \text{ (C:Nominal capacitance)} \\ : 500 \text{ M}\Omega \text{ min.}$	
	High Permittivity(Class2) Note 1	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		
		C	Class 1	Class 2	
		Standard	High Frequency Ty	pe All items	
	Preconditioning		None	Voltage treatment (Rated voltage are applied for 1 hour at 40°C) Note 3	
Гest	Temperature	40±2°C	60±2°C	40±2°C	
Methods and	Humidity	90 t	to 95%RH	90 to 95%RH	
Remarks	Duration	500+	24/-0 hrs	500+24/-0 hrs	
	Applied voltage	Rate	ed voltage	Rated voltage	
	Charge/discharge current	50ı	mA max.	50mA max.	
	Recovery	6 to 24 hrs (Stan	dard condition)Note 5	24±2 hrs(Standard condition) Note 5	

17. High Temperature Loading

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

	1	 	1				
			Appearance	: No abnormality	•		
			Capacitance change		: Within $\pm 3\%$ or ± 0.3 pF, whichever is larger.		
		Standard	Q	:C<10pF: Q≧			
	Taman awatuwa	o carraar a			:Q≧275+2.5C		
	Temperature				≧350 (C∶Nominal cap	pacitance)	
	Compensating (Class1)		Insulation resistance	: 1000 MΩ min.			
Specified			Appearance	: No abnormality	У		
Value		High Frequency Type	Capacitance change	: Within $\pm 3\%$ or	: Within $\pm 3\%$ or ± 0.3 pF, whichever is larger.		
			Insulation resistance	: 1000 MΩ min	: 1000 MΩ min.		
			Appearance	: No abnormality	У		
			Capacitance change	: Within ±12.5% (BJ, B7, C6, C7, D7, LD(**))			
	High Permittivity (Class2)	Note 1	Dissipation factor	: 5.0% max.(BJ,	B7, C6, C7, D7, LD(※))	
			Insulation resistance	: 50 M Ω μ F or	1000 M Ω , whicheve	r is smaller.	
			Note: ※LD Low dist	tortion high value mu	ıltilayer ceramic capa	acitor	
		Clas	s 1		Class 2		
		Standard I	High Frequency Type	BJ, LD()	C6	B7, C7, D7	
	Preconditioning Non		20	Voltage treatment (Twice the rated voltage shall be applied for		age shall be applied for	
	Freconditioning	NO	ne	1 hour at 85°C, 105°C or 125°C) Note 3, 4			
Test	Temperature	Maximum operating temperature		Maximum operating temperature			
Methods and Remarks	Duration	1000+48/-0 hrs		1000+48/-0 hrs			
	Applied voltage	Rated voltage × 2		Rated voltage × 2 Note 4			
	Charge/discharge	50mA max.		50mA max.			
	current	JUIIA	max.	John max.			
	Recovery	6 to 24hr (Standard	l condition) Note 5	24±2 hrs (Standard condition) Note 5]
		·		V// D / // //			

Note: **LD Low distortion high value multilayer ceramic capacitor

- Note 2 Thermal treatment : Initial value shall be measured after test sample is heat-treated at $150 \pm 0/-10^{\circ}$ C for an hour and kept at room temperature for 24 ± 2 hours.
- Note 3 Voltage treatment: Initial value shall be measured after test sample is voltage-treated for an hour at both the temperature and voltage specified in the test conditions, and kept at room temperature for 24±2hours.
- Note 4 150% of rated voltage is applicable to some items. Please refer to their specifications for further information.
- Note 5 Standard condition: Temperature: 5 to 35°C, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condition.
 - Temperature: 20±2°C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition".

Note 1 The figures indicate typical specifications. Please refer to individual specifications in detail.

Finis catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Precautions on the use of Multilayer Ceramic Capacitors

1. Circuit Design

- Verification of operating environment, electrical rating and performance
 - 1. A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have severe social ramifications.

Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from them used in general purpose applications.

Precautions

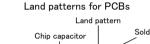
- ◆Operating Voltage (Verification of Rated voltage)
 - 1. The operating voltage for capacitors must always be their rated voltage or less.
 - If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less.
 - For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less.
 - 2. Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC voltage or a pulse voltage having rapid rise time is used in a circuit.

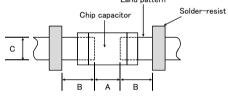
2. PCB Design

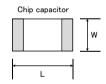
Precautions

- ◆Pattern configurations (Design of Land-patterns)
- 1. When capacitors are mounted on PCBs, the amount of solder used (size of fillet) can directly affect the capacitor performance. Therefore, the following items must be carefully considered in the design of land patterns:
 - (1) Excessive solder applied can cause mechanical stresses which lead to chip breaking or cracking. Therefore, please consider appropriate land-patterns for proper amount of solder.
 - (2) When more than one component are jointly soldered onto the same land, each component's soldering point shall be separated by solder-resist.
- ◆Pattern configurations (Capacitor layout on PCBs)

After capacitors are mounted on boards, they can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering of the boards, etc.). For this reason, land pattern configurations and positions of capacitors shall be carefully considered to minimize stresses.


◆Pattern configurations (Design of Land-patterns)

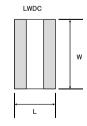

The following diagrams and tables show some examples of recommended land patterns to prevent excessive solder amounts.


- (1) Recommended land dimensions for typical chip capacitors
- Multilayer Ceramic Capacitors : Recommended land dimensions (unit: mm)

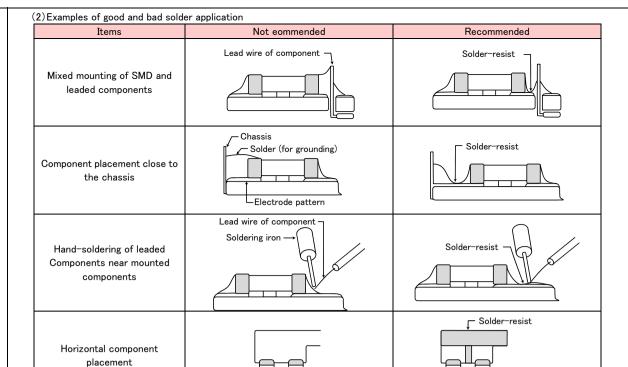
Wave-soldering

		0			
Type		107	212	316	325
C:	L	1.6	2.0	3.2	3.2
Size	W	0.8	1.25	1.6	2.5
A	4	0.8 to 1.0	1.0 to 1.4	1.8 to 2.5	1.8 to 2.5
В		0.5 to 0.8	0.8 to 1.5	0.8 to 1.7	0.8 to 1.7
С		0.6 to 0.8	0.9 to 1.2	1.2 to 1.6	1.8 to 2.5

Technical considerations

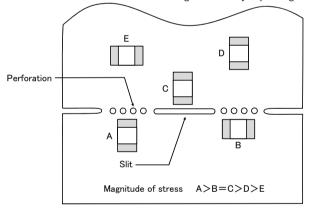

Reflow-soldering

		ordorning							
Ty	/ре	042	063	105	107	212	316	325	432
C:	L	0.4	0.6	1.0	1.6	2.0	3.2	3.2	4.5
Size	W	0.2	0.3	0.5	0.8	1.25	1.6	2.5	3.2
	A	0.15 to 0.25	0.20 to 0.30	0.45 to 0.55	0.8 to 1.0	0.8 to 1.2	1.8 to 2.5	1.8 to 2.5	2.5 to 3.5
	В	0.15 to 0.20	0.20 to 0.30	0.40 to 0.50	0.6 to 0.8	0.8 to 1.2	1.0 to 1.5	1.0 to 1.5	1.5 to 1.8
	С	0.15 to 0.30	0.25 to 0.40	0.45 to 0.55	0.6 to 0.8	0.9 to 1.6	1.2 to 2.0	1.8 to 3.2	2.3 to 3.5


Note: Recommended land size might be different according to the allowance of the size of the product.

●LWDC: Recommended land dimensions for reflow-soldering (unit: mm)

(411111)					
Туре		105	107	212	
Size	L	0.52	0.8	1.25	
Size	W	1.0	1.6	2.0	
1	4	0.18 to 0.22	0.25 to 0.3	0.5 to 0.7	
В		0.2 to 0.25	0.3 to 0.4	0.4 to 0.5	
С		0.9 to 1.1	1.5 to 1.7	1.9 to 2.1	

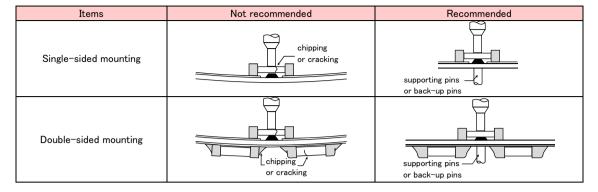

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/)

- ◆Pattern configurations (Capacitor layout on PCBs)
 - 1-1. The following is examples of good and bad capacitor layouts; capacitors shall be located to minimize any possible mechanical stresses from board warp or deflection.

Octobboo It offit board 11	arp or domoodiom.	
Items	Not recommended	Recommended
Deflection of board		Place the product at a right angle to the direction of the anticipated mechanical stress.

1-2. The amount of mechanical stresses given will vary depending on capacitor layout. Please refer to diagram below.

1-3. When PCB is split, the amount of mechanical stress on the capacitors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, please consider the PCB, split methods as well as chip location.


3. Mounting

- ◆Adjustment of mounting machine
 - 1. When capacitors are mounted on PCB, excessive impact load shall not be imposed on them.
 - 2. Maintenance and inspection of mounting machines shall be conducted periodically.
- Precautions Selection of Adhesives
 - 1. When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked: size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

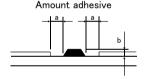
◆Adjustment of mounting machine

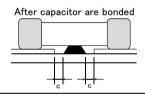
- 1. When the bottom dead center of a pick-up nozzle is too low, excessive force is imposed on capacitors and causes damages. To avoid this, the following points shall be considerable.
 - (1) The bottom dead center of the pick-up nozzle shall be adjusted to the surface level of PCB without the board deflection.
 - (2) The pressure of nozzle shall be adjusted between 1 and 3 N static loads.
 - (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins shall be used on the other side of the PCB. The following diagrams show some typical examples of good and bad pick-up nozzle placement:

Technical considerations

2. As the alignment pin is worn out, adjustment of the nozzle height can cause chipping or cracking of capacitors because of mechanical impact on the capacitors.

To avoid this, the monitoring of the width between the alignment pins in the stopped position, maintenance, check and replacement of the pin shall be conducted periodically.


◆Selection of Adhesives


Some adhesives may cause IR deterioration. The different shrinkage percentage of between the adhesive and the capacitors may result in stresses on the capacitors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect components. Therefore, the following precautions shall be noted in the application of adhesives.

- (1) Required adhesive characteristics
 - a. The adhesive shall be strong enough to hold parts on the board during the mounting & solder process.
 - b. The adhesive shall have sufficient strength at high temperatures.
 - c. The adhesive shall have good coating and thickness consistency.
 - d. The adhesive shall be used during its prescribed shelf life.
 - e. The adhesive shall harden rapidly.
 - f. The adhesive shall have corrosion resistance.
 - g. The adhesive shall have excellent insulation characteristics.
 - h. The adhesive shall have no emission of toxic gasses and no effect on the human body.
- (2) The recommended amount of adhesives is as follows;

[Recommended condition]

Figure	212/316 case sizes as examples
а	0.3mm min
b	100 to 120 μm
С	Adhesives shall not contact land

4. Soldering

Precautions

Technical

considerations

◆Selection of Flux

Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use;

- (1) Flux used shall be less than or equal to 0.1 wt%(in CI equivalent) of halogenated content. Flux having a strong acidity content shall not be applied.
- (2) When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level.
- (3) When water-soluble flux is used, special care shall be taken to properly clean the boards.

◆Soldering

Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions.

Sn-Zn solder paste can adversely affect MLCC reliability.

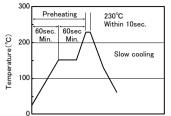
Please contact us prior to usage of Sn-Zn solder.

◆Selection of Flux

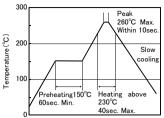
1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead to corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors.

- 1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitted and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.
- 1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors in high humidity conditions may cause a degradation of insulation resistance and reliability of the capacitors. Therefore, the cleaning methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used.

methods and the cap

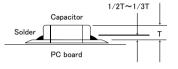

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

♦Soldering

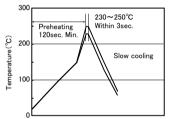

- · Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling.
- · Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock
- Preheating: Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be within 100 to 130°C.
- · Cooling: The temperature difference between the capacitors and cleaning process shall not be greater than 100°C.

[Reflow soldering]

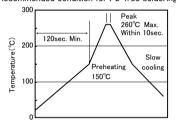
[Recommended conditions for eutectic soldering]



[Recommended condition for Pb-free soldering]


Caution

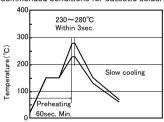
- 1The ideal condition is to have solder mass(fillet)controlled to 1/2 to 1/3 of the thickness of a capacitor.
- ②Because excessive dwell times can adversely affect solderability, soldering duration shall be kept as close to recommended times as possible.
- 3 Allowable number of reflow soldering: 2 times max.



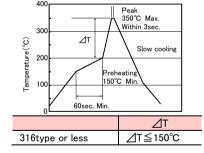
[Wave soldering]

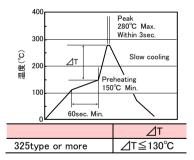
[Recommended conditions for eutectic soldering]

[Recommended condition for Pb-free soldering]



Caution


- ①Wave soldering must not be applied to capacitors designated as for reflow soldering only.
- ②Allowable number of wave soldering: 1 times max.


[Hand soldering]

[Recommended conditions for eutectic soldering]

[Recommended condition for Pb-free soldering]

Caution

- ①Use a 50W soldering iron with a maximum tip diameter of 1.0 mm.
- 2The soldering iron shall not directly touch capacitors.
- ③Allowable number of hand soldering: 1 times max.

	♦Cleaning conditions				
Precautions	 When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use of the cleaning. (e.g. to remove soldering flux or other materials from the production process.) Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics. 				
Technical considerations	1. The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may adversely affect the performance of the capacitors. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead to the cracking of capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked; Ultrasonic output: 20 W/l or less Ultrasonic frequency: 40 kHz or less Ultrasonic washing period: 5 min. or less				

6. Resin coating and mold

Precautions

- 1. With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance.
- 2. When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive heat may lead to damage or destruction of capacitors.

The use of such resins, molding materials etc. is not recommended.

7. Handling

♦Splitting of PCB

- 1. When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board.
- 2. Board separation shall not be done manually, but by using the appropriate devices.

Precautions

◆Mechanical considerations

Be careful not to subject capacitors to excessive mechanical shocks.

- (1) If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used.
- (2) Please be careful that the mounted components do not come in contact with or bump against other boards or components.

8. Storage conditions

◆Storage

- 1. To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible.
 - Recommended conditions

Precautions

Ambient temperature : Below 30°C
Humidity : Below 70% RH

The ambient temperature must be kept below 40° C. Even under ideal storage conditions, solderability of capacitor is deteriorated as time passes, so capacitors shall be used within 6 months from the time of delivery.

- Ceramic chip capacitors shall be kept where no chlorine or sulfur exists in the air.
- 2. The capacitance values of high dielectric constant capacitors will gradually decrease with the passage of time, so care shall be taken to design circuits. Even if capacitance value decreases as time passes, it will get back to the initial value by a heat treatment at 150°C for 1hour.

Technical considerations

If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation and quality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.

**RCR-2335B(Safety Application Guide for fixed ceramic capacitors for use in electronic equipment) is published by JEITA. Please check the guide regarding precautions for deflection test, soldering by spot heat, and so on.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Taiyo Yuden manufacturer:

Other Similar products are found below:

D55342E07B523DR-T/R NCA1206X7R104K16TRPF NIN-FB391JTRF NIN-FC2R7JTRF NMC0402XPO220J50TRPF

NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R153K16TRPF

NMC0402X7R392K50TRPF NMC0603NPO1R8C50TRPF NMC0603NPO201J50TRPF NMC0603NPO330G50TRPF

NMC0603NPO331F50TRPF NMC0603X5R475M6.3TRPF NMC0805NPO220J100TRPF NMC0805NPO270J50TRPF

NMC0805NPO681F50TRPF NMC0805NPO820J50TRPF NMC1206X7R102K50TRPF NMC1210Y5V105Z50TRPLPF NMC
L0402NPO7R0C50TRPF NMC-L0603NPO2R2B50TRPF NMC-P1206X7R103K1KVTRPLPF NMC-Q0402NPO8R2D200TRPF

C1206C101J1GAC C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT KHC201E225M76N0T00

1812J2K00332KXT CCR06CG153FSV CDR14BP471CJUR CDR31BX103AKWR CDR33BX683AKUS CGA2B2C0G1H010C

CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H120J CGA2B2C0G1H151J

CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C CGA2B2C0G1H390J CGA2B2C0G1H391J CGA2B2C0G1H3R3C CGA2B2C0G1H680J

CGA2B2C0G1H6R8D