# Notice for TAIYO YUDEN products

# Please read this notice before using the TAIYO YUDEN products.

# REMINDERS

### Product Information in this Catalog

Product information in this catalog is as of January 2021. All of the contents specified herein and production status of the products listed in this catalog are subject to change without notice due to technical improvement of our products, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

### Approval of Product Specifications

Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available. When using our products, please be sure to approve our product specifications or make a written agreement on the product specification with TAIYO YUDEN in advance.

### Pre-Evaluation in the Actual Equipment and Conditions

Please conduct validation and verification of our products in actual conditions of mounting and operating environment before using our products.

# Limited Application

### 1. Equipment Intended for Use

The products listed in this catalog are intended for generalpurpose and standard use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and other equipment specified in this catalog or the individual product specification sheets.

TAIYO YUDEN has the line-up of the products intended for use in automotive electronic equipment, telecommunications infrastructure and industrial equipment, or medical devices classified as GHTF Classes A to C (Japan Classes I to III). Therefore, when using our products for these equipment, please check available applications specified in this catalog or the individual product specification sheets and use the corresponding products.

### 2. Equipment Requiring Inquiry

Please be sure to contact TAIYO YUDEN for further information before using the products listed in this catalog for the following equipment (excluding intended equipment as specified in this catalog or the individual product specification sheets) which may cause loss of human life, bodily injury, serious property damage and/or serious public impact due to a failure or defect of the products and/or malfunction attributed thereto.

- (1) Transportation equipment (automotive powertrain control system, train control system, and ship control system, etc.)
- (2) Traffic signal equipment
- (3) Disaster prevention equipment, crime prevention equipment
- (4) Medical devices classified as GHTF Class C (Japan Class III)
- (5) Highly public information network equipment, dataprocessing equipment (telephone exchange, and base station, etc.)
- (6) Any other equipment requiring high levels of quality and/or reliability equal to the equipment listed above

### 3. Equipment Prohibited for Use

Please do not incorporate our products into the following equipment requiring extremely high levels of safety and/or reliability.

- (1) Aerospace equipment (artificial satellite, rocket, etc.)
- (2) Aviation equipment \*1
- (3) Medical devices classified as GHTF Class D (Japan Class IV), implantable medical devices \*<sup>2</sup>

- (4) Power generation control equipment (nuclear power, hydroelectric power, thermal power plant control system, etc.)
- (5) Undersea equipment (submarine repeating equipment, underwater work equipment, etc.)
   (2) Million
- (6) Military equipment
- Any other equipment requiring extremely high levels of safety and/or reliability equal to the equipment listed above

#### \*Notes:

- There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.
- Implantable medical devices contain not only internal unit which is implanted in a body, but also external unit which is connected to the internal unit.

## 4. Limitation of Liability

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment that is not intended for use by TAIYO YUDEN, or any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

### Safety Design

When using our products for high safety and/or reliability-required equipment or circuits, please fully perform safety and/or reliability evaluation. In addition, please install (i) systems equipped with a protection circuit and a protection device and/or (ii) systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault for a failsafe design to ensure safety.

#### Intellectual Property Rights

Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.

#### Limited Warranty

Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a failure or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement.

# TAIYO YUDEN's Official Sales Channel

The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

#### Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

# Automotive Application Guide

We classify automotive electronic equipment into the following four application categories and set usable application categories for each of our products. When using our products for automotive electronic equipment, please be sure to check such application categories and use our products accordingly. Should you have any questions on this matter, please contact us.

| Category       | Automotive Electronic Equipment (Typical Example)                                                                                                                                                                                                                                                                                                                   |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POWERTRAIN     | <ul> <li>Engine ECU (Electronically Controlled Fuel Injector)</li> <li>Cruise Control Unit</li> <li>4WS (4 Wheel Steering)</li> <li>Transmission</li> <li>Power Steering</li> <li>HEV/PHV/EV Core Control (Battery, Inverter, DC-DC)</li> <li>Automotive Locator (Car location information providing device), etc.</li> </ul>                                       |
| SAFETY         | <ul> <li>ABS (Anti-Lock Brake System)</li> <li>ESC (Electronic Stability Control)</li> <li>Airbag</li> <li>ADAS (Equipment that directly controls running, turning and stopping), etc.</li> </ul>                                                                                                                                                                   |
| BODY & CHASSIS | <ul> <li>Wiper</li> <li>Automatic Door</li> <li>Power Window</li> <li>Keyless Entry System</li> <li>Electric Door Mirror</li> <li>Automobile Digital Mirror</li> <li>Interior Lighting</li> <li>Automobile Air Conditioning System</li> <li>LED Headlight</li> <li>TPMS (Tire Pressure Monitoring System)</li> <li>Anti-Theft Device (Immobilizer), etc.</li> </ul> |
| INFOTAINMENT   | <ul> <li>Car Infotainment System</li> <li>ITS/Telematics System</li> <li>Instrument Cluster</li> <li>ADAS (Sensor, Equipment that is not interlocked with safety equipment or powertrain)</li> <li>Dashcam (genuine products for automotive manufacturer), etc.</li> </ul>                                                                                          |

# MULTILAYER CERAMIC CAPACITORS



PART NUMBER

#### MK 3 6 $\triangle$ В J 0 6 M L H T 🛆 J 1 1 (8) 9 (10)(1) 2 3 (4) 5 6 (7) (11) (12)

1 Rated voltage Code Rated voltage[VDC] 4 А J 6.3 10 L 16 Е Т 25 G 35 U 50 Н 100 Q 250 S 630

②Series name

| Code | Series name                                     |
|------|-------------------------------------------------|
| М    | Multilayer ceramic capacitor                    |
| V    | Multilayer ceramic capacitor for high frequency |
| W    | LW reverse type multilayer capacitor            |

 $\Delta =$ Blank space

| ③End terminatio | n                                           |
|-----------------|---------------------------------------------|
| Code            | End termination                             |
| К               | Plated                                      |
| J               | Soft Termination                            |
| S               | Cu Internal Electrodes (For High Frequency) |
| F               | High Reliability Application                |
| R               | High Reliability Application                |
|                 | (Cu External Electrodes)                    |

(4)Dimension(L × W)

| Туре | Dimensions<br>(L×W)[mm] | EIA (inch) |
|------|-------------------------|------------|
| 063  | 0.6 × 0.3               | 0201       |
| 105  | 1.0 × 0.5               | 0402       |
| 105  | 0.52×1.0 💥              | 0204       |
| 107  | 1.6 × 0.8               | 0603       |
|      | 0.8 × 1.6 💥             | 0306       |
| 212  | 2.0 × 1.25              | 0805       |
|      | 1.25×2.0 💥              | 0508       |
| 316  | 3.2 × 1.6               | 1206       |
| 325  | 3.2 × 2.5               | 1210       |
| 432  | 4.5 × 3.2               | 1812       |

type(

| ode   | Туре       | L[mm]          | W[mm]                  | T[mm]           |
|-------|------------|----------------|------------------------|-----------------|
| 2     | ALL        | Standard       | Standard               | Standard        |
|       | 063        | 0.6±0.05       | 0.3±0.05               | 0.3±0.05        |
|       | 105        | 1.0±0.10       | 0.5±0.10               | 0.5±0.10        |
|       | 107        | 1.6+0.15/-0.05 | 0.8+0.15/-0.05         | 0.8+0.15/-0.05  |
| A     | 212        | 2.0+0.15/-0.05 | $1.25 \pm 0.15 - 0.05$ | $0.85 \pm 0.10$ |
|       | 212        | 2.0+0.15/-0.05 | 1.25+0.15/-0.05        | 1.25+0.15/-0.05 |
|       | 316        | 3.2±0.20       | 1.6±0.20               | 1.6±0.20        |
|       | 325        | $3.2 \pm 0.30$ | 2.5±0.30               | $2.5 \pm 0.30$  |
|       | 105        | 1.0+0.15/-0.05 | 0.5+0.15/-0.05         | 0.5+0.15/-0.05  |
|       | 107        | 1.6+0.20/-0    | 0.8+0.20/-0            | 0.8+0.20/-0     |
| B     | 212        | 2.0+0.20/-0    | 1.25+0.20/-0           | $0.85 \pm 0.10$ |
|       | 212        | 2.0+0.20/-0    | 1.25+0.20/-0           | 1.25+0.20/-0    |
|       | 316        | $3.2 \pm 0.30$ | 1.6±0.30               | $1.6 \pm 0.30$  |
|       | 105        | 1.0+0.20/-0    | 0.5+0.20/-0            | 0.5+0.20/-0     |
| С     | 107        | 1.6+0.25/-0    | 0.8+0.25/-0            | 0.8+0.25/-0     |
|       | 212        | 2.0+0.25/-0    | 1.25+0.25/-0           | 1.25+0.25/-0    |
|       | 212        | 2.0±0.15       | 1.25±0.15              | $0.85 \pm 0.15$ |
| K 010 | 2 2 + 0 20 | $1.6 \pm 0.20$ | 1.15±0.20              |                 |
| К     | 316        | $3.2 \pm 0.20$ | 1.0 - 0.20             | 1.6±0.20        |
|       | 325        | 3.2±0.50       | 2.5±0.30               | 2.5±0.30        |

Note: cf. STANDARD EXTERNAL DIMENSIONS

 $\Delta$ = Blank space

# 6 Temperature characteristics code

| High dielectric type |       |                |                          |                |                    |                          |                   |
|----------------------|-------|----------------|--------------------------|----------------|--------------------|--------------------------|-------------------|
| Code                 |       | cable<br>Idard | Temperature<br>range[°C] | Ref. Temp.[°C] | Capacitance change | Capacitance<br>tolerance | Tolerance<br>code |
|                      | stari | luaru          | rangeloj                 |                |                    |                          |                   |
| BJ                   | EIA   | X5R            | $-55 \sim + 85$          | 25             | ±15%               | ±10%                     | K                 |
| БЈ                   | EIA   | AJK            | -00.4 - 00               | 20             | 10%                | ±20%                     | М                 |
| C6                   | EIA   | X6S            | $-55 \sim +105$          | 25             | ±22%               | ±10%                     | К                 |
| 00                   | EIA   | A03            | - 55/~ + 105             | 20             | <u> </u>           | ±20%                     | М                 |
| B7                   | EIA   | X7R            | $-55 \sim +125$          | 25             | ±15%               | ±10%                     | К                 |
| Б7                   | EIA   | A/K            | -55/~+125                | 25             | ±13%               | ±20%                     | М                 |
| C7                   | EIA   | X7S            | $-55 \sim +125$          | 25             | ±22%               | ±10%                     | К                 |
| 07                   | EIA   | ~/3            | -55/- +125               | 20             | <u> </u>           | ±20%                     | М                 |
| D7                   | EIA   | Х7Т            | $-55 \sim +125$          | 25             | 1.000/ /           | ±10%                     | К                 |
| 07                   | EIA   | ~/1            | -00-9 +120               | 20             | +22%/-33%          | ±20%                     | М                 |

■Temperature compensating type

| Temperature d | ompensa   | ating type    | 3                        |                |                    |                          |                   |    |    |    |    |    |  |     |   |
|---------------|-----------|---------------|--------------------------|----------------|--------------------|--------------------------|-------------------|----|----|----|----|----|--|-----|---|
| Code          |           | cable<br>dard | Temperature<br>range[°C] | Ref. Temp.[°C] | Capacitance change | Capacitance<br>tolerance | Tolerance<br>code |    |    |    |    |    |  |     |   |
|               | JIS CG 20 |               |                          |                |                    | ±0.1pF                   | В                 |    |    |    |    |    |  |     |   |
|               |           | 20            |                          | ±0.25pF        | С                  |                          |                   |    |    |    |    |    |  |     |   |
| CG            |           |               | $-55 \sim +125$          |                | 0±30ppm/°C         | $\pm 0.5 pF$             | D                 |    |    |    |    |    |  |     |   |
| Ga            |           |               | - 55/~ + 125             |                | 0±30ppm/C          | ±1pF                     | F                 |    |    |    |    |    |  |     |   |
|               | EIA       | C0G           |                          | 25             | 25                 | 25                       | 25                | 25 | 25 | 25 | 25 | 25 |  | ±2% | G |
|               |           |               |                          |                |                    |                          |                   |    |    |    |    |    |  |     |   |

### ONominal capacitance

CERAMIC CAPACITORS

AUT0

For Automotive Electronic Equipment MULTILAYER CERAMIC CAPACITORS

| Code<br>(example) | Nominal capacitance |
|-------------------|---------------------|
| 0R5               | 0.5pF               |
| 010               | 1pF                 |
| 100               | 10pF                |
| 101               | 100pF               |
| 102               | 1,000pF             |
| 103               | 0.01 <i>µ</i> F     |
| 104               | 0.1 <i>µ</i> F      |
| 105               | 1.0 <i>µ</i> F      |
| 106               | 10 µ F              |
| 107               | 100 µ F             |

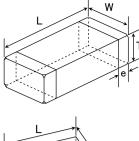
Note : R=Decimal point

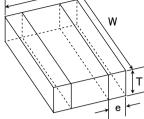
| 8 Capacitance tolerance |                       |  |  |
|-------------------------|-----------------------|--|--|
| Code                    | Capacitance tolerance |  |  |
| А                       | ±0.05pF               |  |  |
| В                       | ±0.1pF                |  |  |
| С                       | ±0.25pF               |  |  |
| D                       | ±0.5pF                |  |  |
| G                       | ±2%                   |  |  |
| J                       | $\pm 5\%$             |  |  |
| К                       | ±10%                  |  |  |
| М                       | ±20%                  |  |  |

| (9)Thickness |                       |
|--------------|-----------------------|
| Code         | Thickness[mm]         |
| Р            | 0.3                   |
| Т            | 0.3                   |
| V            | 0.5                   |
| С            | 0.7(107type or more)  |
| А            | 0.8                   |
| D            | 0.85(212type or more) |
| F            | 1.15                  |
| G            | 1.25                  |
| L            | 1.6                   |
| Ν            | 1.9                   |
| М            | 2.5                   |

| ①Special | code |
|----------|------|
|----------|------|

\_\_\_\_


| Code | Special code                                                                             |  |
|------|------------------------------------------------------------------------------------------|--|
| -    | Standard                                                                                 |  |
| Н    | MLCC for Automotive                                                                      |  |
| 8    | MLCC for Telecommunications infrastructure<br>and Industrial equipment / Medical devices |  |


# (1)Packaging

| 0    |                                                |
|------|------------------------------------------------|
| Code | Packaging                                      |
| F    | $\phi$ 178mm Taping (2mm pitch)                |
| R    | $\phi$ 178mm Embossed Taping (4mm pitch)       |
| Т    | $\phi$ 178mm Taping (4mm pitch)                |
|      | $\phi$ 178mm Taping (4mm pitch, 1000 pcs/reel) |
| P    | 325 type(Thickness code M)                     |

#### (12)Int - 1 ~ 4

| Winternal code |               |
|----------------|---------------|
| Code           | Internal code |
| Δ              | Standard      |
|                |               |





※ LW reverse type

| Type(EIA)                    |                                         |                                        |                                        |    |                                                                                      |  |  |  |  |  |  |  |
|------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|----|--------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Type(EIA)                    | L                                       | W                                      | T                                      | *1 | e                                                                                    |  |  |  |  |  |  |  |
| □MK063(0201)                 | 0.6±0.03<br>(0.024±0.001)               | 0.3±0.03<br>(0.012±0.001)              | 0.3±0.03<br>(0.012±0.001)              | т  | 0.15±0.05<br>(0.006±0.002)                                                           |  |  |  |  |  |  |  |
| □MK105(0402)<br>□MF105(0402) | $1.0 \pm 0.05$<br>(0.039 ± 0.002)       | $0.5 \pm 0.05$<br>(0.020 $\pm 0.002$ ) | $0.5 \pm 0.05$<br>(0.020 ± 0.002)      | V  | 0.25±0.10<br>(0.010±0.004)                                                           |  |  |  |  |  |  |  |
| □WK105(0204)※                | $0.52 \pm 0.05$<br>(0.020 $\pm 0.002$ ) | $1.0 \pm 0.05$<br>(0.039 ± 0.002)      | $0.3 \pm 0.05$<br>(0.012 ± 0.002)      | Р  | 0.18±0.08<br>(0.007±0.003)                                                           |  |  |  |  |  |  |  |
| □MK107(0603)<br>□MF107(0603) | $1.6 \pm 0.10$<br>(0.063 ± 0.004)       | $0.8 \pm 0.10$<br>(0.031 ± 0.004)      | $0.8 \pm 0.10$<br>(0.031 ± 0.004)      | A  | $\begin{array}{c} 0.35 \pm 0.25 \\ (0.014 \pm 0.010) \end{array}$                    |  |  |  |  |  |  |  |
| □MJ107(0603)                 | $1.6 \pm 0.004$ )<br>(0.063 \pm 0.004)  | $0.8 \pm 0.10$<br>(0.031 ± 0.004)      | $0.8 \pm 0.10$<br>(0.031 ± 0.004)      | A  | 0.35 + 0.3/ - 0.25<br>(0.014 + 0.012/ - 0.010)                                       |  |  |  |  |  |  |  |
| □VS107(0603)                 | $1.6 \pm 0.10$<br>(0.063 ± 0.004)       | $0.8 \pm 0.10$<br>(0.031 ± 0.004)      | 0.7±0.10<br>(0.028±0.004)              | С  | $\begin{array}{c} 0.011 \pm 0.012 \\ 0.35 \pm 0.25 \\ (0.014 \pm 0.010) \end{array}$ |  |  |  |  |  |  |  |
| □WK107(0306)※                | 0.8±0.10<br>(0.031±0.004)               | $1.6 \pm 0.10$<br>(0.063 ± 0.004)      | $0.5 \pm 0.05$<br>(0.020 ± 0.002)      | V  | $0.25 \pm 0.15$<br>(0.010 ± 0.006)                                                   |  |  |  |  |  |  |  |
| □MK212(0805)                 | 2.0±0.10                                | 1.25±0.10                              | 0.85±0.10<br>(0.033±0.004)             | D  | 0.5±0.25                                                                             |  |  |  |  |  |  |  |
| □MF212(0805)                 | (0.079±0.004)                           | (0.049±0.004)                          | $1.25 \pm 0.10$<br>(0.049 ± 0.004)     | G  | $(0.020 \pm 0.010)$                                                                  |  |  |  |  |  |  |  |
|                              | 2.0±0.10                                | 1.25±0.10                              | 0.85±0.10<br>(0.033±0.004)             | D  | 0.5+0.35/-0.25                                                                       |  |  |  |  |  |  |  |
| □MJ212(0805)                 | (0.079±0.004)                           | (0.049±0.004)                          | $1.25 \pm 0.10$<br>(0.049 ± 0.004)     | G  | (0.020+0.014/-0.010)                                                                 |  |  |  |  |  |  |  |
| □VS212(0805)                 | $2.0 \pm 0.10$<br>(0.079 $\pm 0.004$ )  | $1.25 \pm 0.10$<br>(0.049 ± 0.004)     | 0.85±0.10<br>(0.033±0.004)             | D  | 0.5±0.25<br>(0.020±0.010)                                                            |  |  |  |  |  |  |  |
| □WK212(0508)※                | $1.25 \pm 0.15$<br>(0.049 $\pm 0.006$ ) | $2.0 \pm 0.15$<br>(0.079 $\pm 0.006$ ) | 0.85±0.10<br>(0.033±0.004)             | D  | 0.3±0.2<br>(0.012±0.008)                                                             |  |  |  |  |  |  |  |
| □MK316(1206)                 | 3.2±0.15                                | 1.6±0.15                               | 1.15±0.10<br>(0.045±0.004)             | F  | 0.5+0.35/-0.25                                                                       |  |  |  |  |  |  |  |
| □MF316(1206)                 | (0.126±0.006)                           | (0.063±0.006)                          | $1.6 \pm 0.20$<br>(0.063 ± 0.008)      | L  | (0.020+0.014/-0.010)                                                                 |  |  |  |  |  |  |  |
|                              | 3.2±0.15                                | 1.6±0.15                               | $1.15 \pm 0.10$<br>(0.045 ± 0.004)     | F  | 0.6+0.4/-0.3                                                                         |  |  |  |  |  |  |  |
| □MJ316(1206)                 | $(0.126 \pm 0.006)$                     | $(0.063 \pm 0.006)$                    | $1.6 \pm 0.20$<br>(0.063 ± 0.008)      | L  | (0.024+0.016/-0.012)                                                                 |  |  |  |  |  |  |  |
|                              |                                         |                                        | $1.15 \pm 0.10$<br>(0.045 ± 0.004)     | F  |                                                                                      |  |  |  |  |  |  |  |
| □MK325(1210)<br>□MF325(1210) | 3.2±0.30<br>(0.126±0.012)               | 2.5±0.20<br>(0.098±0.008)              | 1.9±0.20<br>(0.075±0.008)              | N  | 0.6±0.3<br>(0.024±0.012)                                                             |  |  |  |  |  |  |  |
|                              |                                         |                                        | 2.5±0.20<br>(0.098±0.008)              | м  |                                                                                      |  |  |  |  |  |  |  |
| □M (225 (1210)               | 3.2±0.30 2.5±0.20                       |                                        | 1.9±0.20<br>(0.075±0.008)              | N  | 0.6+0.4/-0.3                                                                         |  |  |  |  |  |  |  |
| □MJ325(1210)                 | (0.126±0.012)                           | (0.098±0.008)                          | 2.5±0.20<br>(0.098±0.008)              | М  | (0.024+0.016/-0.012)                                                                 |  |  |  |  |  |  |  |
| □MK432(1812)                 | 4.5±0.40<br>(0.177±0.016)               | $3.2 \pm 0.30$<br>(0.126 $\pm 0.012$ ) | $2.5 \pm 0.20$<br>(0.098 $\pm 0.008$ ) | м  | $0.9 \pm 0.6$<br>(0.035 ± 0.024)                                                     |  |  |  |  |  |  |  |

STANDARD QUANTITY

| 105  | EIA (inch) | Dimer | nsion | Standard qu                | Standard quantity[pcs]    |  |  |  |
|------|------------|-------|-------|----------------------------|---------------------------|--|--|--|
| туре | EIA (Inch) | [mm]  | Code  | Paper tape                 | Embossed tape             |  |  |  |
| 063  | 0201       | 0.3   | Т     | 15000                      | -                         |  |  |  |
| 105  | 0402       | 0.5   | V     | 10000                      |                           |  |  |  |
| 105  | 0204 💥     | 0.30  | Р     | 10000                      | _                         |  |  |  |
|      |            | 0.7   | С     | 4000                       |                           |  |  |  |
|      |            | 0.8   | А     | 4000                       | _                         |  |  |  |
| 107  | 0603       | 0.8   | А     | 3000<br>(Soft Termination) | -                         |  |  |  |
|      |            | 0.8   | А     | -                          | 3000<br>(Soft Termination |  |  |  |
|      | 0306 💥     | 0.50  | V     | -                          | 4000                      |  |  |  |
|      |            | 0.85  | D     | 4000                       | _                         |  |  |  |
|      | 0805       | 1.25  | G     | -                          | 3000                      |  |  |  |
| 212  | 0805       | 1.25  | G     | -                          | 2000<br>(Soft Termination |  |  |  |
|      | 0508 💥     | 0.85  | D     | 4000                       | -                         |  |  |  |
| 016  | 1006       | 1.15  | F     | -                          | 3000                      |  |  |  |
| 316  | 1206       | 1.6   | L     | -                          | 2000                      |  |  |  |
|      |            | 1.15  | F     |                            | 2000                      |  |  |  |
| 325  | 1210       | 1.9   | Ν     |                            | 2000                      |  |  |  |
|      |            | 2.5   | М     | -                          | 500(T), 1000(P)           |  |  |  |
| 432  | 1812       | 2.5   | М     | -                          | 500                       |  |  |  |

**AUTO** 

### Medium-High Voltage Multilaver Ceramic Capacitors

# 105TYPE (Demension:1.0 × 0.5mm JIS:1005 EIA:0402)

[Temperature Characteristic B7 :  $X7R(-55 \sim +125^{\circ}C)$ , C7 :  $X7S(-55 \sim +125^{\circ}C)$ ] 0.5mm thickness(V)

| Part number 1      | Part number 2 | Rated voltage<br>[V] | erature<br>eristics | Capacitance<br>[F] | Capacitance<br>tolerance [%] | tan δ<br>[%] | HTLT<br>Rated voltage x % | Thickness <sup>*1</sup> [mm] | Note |
|--------------------|---------------|----------------------|---------------------|--------------------|------------------------------|--------------|---------------------------|------------------------------|------|
| HMK105 B7221[]VHFE |               |                      | X7R                 | 220 p              | ±10, ±20                     | 3.5          | 200                       | 0.5±0.05                     |      |
| HMK105 B7331 VHFE  |               |                      | X7R                 | 330 p              | ±10, ±20                     | 3.5          | 200                       | $0.5 \pm 0.05$               |      |
| HMK105 B7471 VHFE  |               |                      | X7R                 | 470 p              | ±10, ±20                     | 3.5          | 200                       | $0.5 \pm 0.05$               |      |
| HMK105 B7681 VHFE  |               |                      | X7R                 | 680 p              | ±10, ±20                     | 3.5          | 200                       | $0.5 \pm 0.05$               |      |
| HMK105 B7102 VHFE  |               |                      | X7R                 | 1000 p             | ±10, ±20                     | 3.5          | 200                       | $0.5 \pm 0.05$               |      |
| HMK105 B7152[]VHFE |               | 100                  | X7R                 | 1500 p             | ±10, ±20                     | 3.5          | 200                       | $0.5 \pm 0.05$               |      |
| HMK105 B7222 VHFE  |               |                      | X7R                 | 2200 p             | ±10, ±20                     | 3.5          | 200                       | $0.5 \pm 0.05$               |      |
| HMK105 B7332[]VHFE |               |                      | X7R                 | 3300 p             | ±10, ±20                     | 3.5          | 200                       | $0.5 \pm 0.05$               |      |
| HMK105 B7472[]VHFE |               |                      | X7R                 | 4700 p             | ±10, ±20                     | 3.5          | 200                       | $0.5 \pm 0.05$               |      |
| HMK105 B7682[]VHFE |               |                      | X7R                 | 6800 p             | ±10, ±20                     | 3.5          | 200                       | $0.5 \pm 0.05$               |      |
| HMK105 B7103 VHFE  |               |                      | X7R                 | 0.01 µ             | ±10, ±20                     | 3.5          | 200                       | $0.5 \pm 0.05$               |      |

#### 107TYPE (Dimension:1.6 × 0.8mm JIS:1608 EIA:0603)

[Temperature Characteristic B7 :  $X7R(-55 \sim +125^{\circ}C)$ , C7 :  $X7S(-55 \sim +125^{\circ}C)$ ] 0.8mm thickness(A)

| Part number 1      | Part number 2 | Rated voltage | Temperature     | Capacitance | Capacitance   | tan ô | HTLT              | Thickness <sup>*1</sup> [mm] | Note |
|--------------------|---------------|---------------|-----------------|-------------|---------------|-------|-------------------|------------------------------|------|
|                    |               | [V]           | characteristics | [F]         | tolerance [%] | [%]   | Rated voltage x % |                              |      |
| HMK107 B7102[]AHT  |               |               | X7R             | 1000 p      | ±10, ±20      | 3.5   | 200               | 0.8±0.10                     |      |
| HMK107 B7152[]AHT  |               |               | X7R             | 1500 p      | ±10, ±20      | 3.5   | 200               | 0.8±0.10                     |      |
| HMK107 B7222[]AHT  |               |               | X7R             | 2200 p      | ±10, ±20      | 3.5   | 200               | 0.8±0.10                     |      |
| HMK107 B7332[]AHT  |               |               | X7R             | 3300 p      | ±10, ±20      | 3.5   | 200               | 0.8±0.10                     |      |
| HMK107 B7472[]AHT  |               |               | X7R             | 4700 p      | ±10, ±20      | 3.5   | 200               | 0.8±0.10                     |      |
| HMK107 B7682[]AHT  |               |               | X7R             | 6800 p      | ±10, ±20      | 3.5   | 200               | 0.8±0.10                     |      |
| HMK107 B7103[]AHT  |               |               | X7R             | 0.01 µ      | ±10, ±20      | 3.5   | 200               | 0.8±0.10                     |      |
| HMK107 B7153[]AHT  |               | 100           | X7R             | 0.015 µ     | ±10, ±20      | 3.5   | 200               | 0.8±0.10                     |      |
| HMK107 B7223[]AHT  |               |               | X7R             | 0.022 µ     | ±10, ±20      | 3.5   | 200               | 0.8±0.10                     |      |
| HMK107 B7333[]AHT  |               |               | X7R             | 0.033 µ     | ±10, ±20      | 3.5   | 200               | 0.8±0.10                     |      |
| HMK107 B7473[AHT   |               |               | X7R             | 0.047 μ     | ±10, ±20      | 3.5   | 200               | 0.8±0.10                     |      |
| HMK107AB7683[]AHTE |               |               | X7R             | 0.068 µ     | ±10, ±20      | 3.5   | 200               | 0.8+0.15/-0.05               |      |
| HMK107 B7104[]AHT  |               | ]             | X7R             | 0.1 μ       | ±10, ±20      | 3.5   | 200               | 0.8±0.10                     |      |
| HMK107AC7154[]AHTE |               |               | X7S             | 0.15 μ      | ±10, ±20      | 3.5   | 150               | 0.8+0.15/-0.05               |      |
| HMK107 C7224[]AHTE |               |               | X7S             | 0.22 μ      | ±10, ±20      | 3.5   | 150               | 0.8±0.10                     |      |

# 212TYPE (Dimension:2.0 × 1.25mm JIS:2012 EIA:0805)

[Temperature Characteristic B7 :  $X7R(-55 \sim + 125^{\circ}C)$ , C7 :  $X7S(-55 \sim + 125^{\circ}C)$ ] 1.25mm thickness(G)

| Part number 1      | Part number 2 | Rated voltage | Tempe   | erature  | Capacitance | Capacitance   | tan δ | HTLT              |                              | Note |
|--------------------|---------------|---------------|---------|----------|-------------|---------------|-------|-------------------|------------------------------|------|
| Part number 1      | Part number 2 | [V]           | charact | eristics | [F]         | tolerance [%] | [%]   | Rated voltage x % | Thickness <sup>*1</sup> [mm] | Note |
| HMK212 B7472[]GHT  |               |               |         | X7R      | 4700 p      | ±10, ±20      | 2.5   | 200               | 1.25±0.10                    |      |
| HMK212 B7682[]GHT  |               |               |         | X7R      | 6800 p      | ±10, ±20      | 2.5   | 200               | 1.25±0.10                    |      |
| HMK212 B7103[]GHT  |               |               |         | X7R      | 0.01 µ      | ±10, ±20      | 3.5   | 200               | 1.25±0.10                    |      |
| HMK212 B7153[]GHT  |               |               |         | X7R      | 0.015 μ     | ±10, ±20      | 3.5   | 200               | 1.25±0.10                    |      |
| HMK212 B7223[]GHT  |               |               |         | X7R      | 0.022 µ     | ±10, ±20      | 3.5   | 200               | 1.25±0.10                    |      |
| HMK212 B7333[]GHT  |               |               |         | X7R      | 0.033 µ     | ±10, ±20      | 3.5   | 200               | 1.25±0.10                    |      |
| HMK212 B7473[]GHT  |               |               |         | X7R      | 0.047 μ     | ±10, ±20      | 3.5   | 200               | 1.25±0.10                    |      |
| HMK212 B7683[]GHT  |               | 100           |         | X7R      | 0.068 µ     | ±10, ±20      | 3.5   | 200               | 1.25±0.10                    |      |
| HMK212 B7104[]GHT  |               |               |         | X7R      | 0.1 μ       | ±10, ±20      | 3.5   | 200               | 1.25±0.10                    |      |
| HMK212BB7154[]GHTE |               |               |         | X7R      | 0.15 μ      | ±10, ±20      | 3.5   | 200               | 1.25+0.20/-0                 |      |
| HMK212 B7224[]GHT  |               |               |         | X7R      | 0.22 μ      | ±10, ±20      | 3.5   | 200               | 1.25±0.10                    |      |
| HMK212BC7334[]GHTE |               |               |         | X7S      | 0.33 μ      | ±10, ±20      | 3.5   | 150               | 1.25+0.20/-0                 |      |
| HMK212 C7474[]GHTE |               |               |         | X7S      | 0.47 μ      | ±10, ±20      | 3.5   | 150               | 1.25±0.10                    |      |
| HMK212CC7684[]GHTE |               |               |         | X7S      | 0.68 µ      | ±10, ±20      | 3.5   | 150               | 1.25+0.25/-0                 |      |
| HMK212BC7105[GHTE  |               |               |         | X7S      | 1 μ         | ±10, ±20      | 3.5   | 150               | 1.25+0.20/-0                 |      |
| QMK212 B7472[]GHT  |               |               |         | X7R      | 4700 p      | ±10, ±20      | 2.5   | 150               | 1.25±0.10                    |      |
| QMK212 B7682[]GHT  |               | ]             |         | X7R      | 6800 p      | ±10, ±20      | 2.5   | 150               | 1.25±0.10                    |      |
| QMK212 B7103[]GHT  |               | 250           |         | X7R      | 0.01 µ      | ±10, ±20      | 2.5   | 150               | 1.25±0.10                    |      |
| QMK212 B7153[]GHT  |               | ]             |         | X7R      | 0.015 μ     | ±10, ±20      | 2.5   | 150               | 1.25±0.10                    |      |
| QMK212 B7223[]GHT  |               |               |         | X7R      | 0.022 µ     | ±10, ±20      | 2.5   | 150               | $1.25 \pm 0.10$              |      |

【Temperature Characteristic B7 : X7R(-55~+125°C)】 0.85mm thickness(D)

| Part numbe   | w 1 | Part number 2 | Rated voltage |         |          |        | Capacitance   | tan δ | HTLT              | Thickness <sup>*1</sup> [mm] | Note |
|--------------|-----|---------------|---------------|---------|----------|--------|---------------|-------|-------------------|------------------------------|------|
| Fart humbe   |     | Fart number 2 | [V]           | charact | eristics | [F]    | tolerance [%] | [%]   | Rated voltage x % | I NICKNESS [mm]              | NOLE |
| HMK212 B7102 | DHT |               |               |         | X7R      | 1000 p | ±10, ±20      | 2.5   | 200               | 0.85±0.10                    |      |
| HMK212 B7152 | DHT |               | 100           |         | X7R      | 1500 p | ±10, ±20      | 2.5   | 200               | $0.85 \pm 0.10$              |      |
| HMK212 B7222 | DHT |               | 100           |         | X7R      | 2200 p | ±10, ±20      | 2.5   | 200               | $0.85 \pm 0.10$              |      |
| HMK212 B7332 | DHT |               |               |         | X7R      | 3300 p | ±10, ±20      | 2.5   | 200               | $0.85 \pm 0.10$              |      |
| QMK212 B7102 | DHT |               |               |         | X7R      | 1000 p | ±10, ±20      | 2.5   | 150               | $0.85 \pm 0.10$              |      |
| QMK212 B7152 | DHT |               | 250           |         | X7R      | 1500 p | ±10, ±20      | 2.5   | 150               | 0.85±0.10                    |      |
| QMK212 B7222 | DHT |               | 230           |         | X7R      | 2200 p | ±10, ±20      | 2.5   | 150               | $0.85 \pm 0.10$              |      |
| QMK212 B7332 | DHT |               |               |         | X7R      | 3300 p | ±10, ±20      | 2.5   | 150               | 0.85±0.10                    |      |

### PART NUMBER

# 316TYPE (Dimension:3.2 × 1.6mm JIS:3216 EIA:1206)

[Temperature Characteristic B7 :  $X7R(-55 \sim +125^{\circ}C)$ , C7 :  $X7S(-55 \sim +125^{\circ}C)$ ] 1.6mm thickness(L)

**AUTO** 

For Automotive Electronic Equipment MEDIUM-HIGH VOLTAGE MULTILAYER CERAMIC CAPACITORS

| Part number 1      | Part number 2 | Rated voltage | Tempe           | rature | Capacitance | Capacitance   | tan δ | HTLT              | Thickness <sup>*1</sup> [mm] | Note |
|--------------------|---------------|---------------|-----------------|--------|-------------|---------------|-------|-------------------|------------------------------|------|
| Part number 1      | Part number 2 | [V]           | characteristics |        | [F]         | tolerance [%] | [%]   | Rated voltage x % | Inickness [mm]               | Note |
| HMK316 B7473[]LHT  |               |               |                 | X7R    | 0.047 μ     | ±10, ±20      | 3.5   | 200               | 1.6±0.20                     |      |
| HMK316 B7683[]LHT  |               |               |                 | X7R    | 0.068 µ     | ±10, ±20      | 3.5   | 200               | 1.6±0.20                     |      |
| HMK316 B7104[]LHT  |               |               |                 | X7R    | 0.1 μ       | ±10, ±20      | 3.5   | 200               | 1.6±0.20                     |      |
| HMK316 B7154[]LHT  |               |               |                 | X7R    | 0.15 μ      | ±10, ±20      | 3.5   | 200               | 1.6±0.20                     |      |
| HMK316 B7224[]LHT  |               | 100           |                 | X7R    | 0.22 μ      | ±10, ±20      | 3.5   | 200               | 1.6±0.20                     |      |
| HMK316 B7334[]LHT  |               | 100           |                 | X7R    | 0.33 μ      | ±10, ±20      | 3.5   | 200               | 1.6±0.20                     |      |
| HMK316 B7474[]LHT  |               |               |                 | X7R    | 0.47 μ      | ±10, ±20      | 3.5   | 200               | 1.6±0.20                     |      |
| HMK316 B7105[]LHT  |               |               |                 | X7R    | 1 μ         | ±10, ±20      | 3.5   | 200               | 1.6±0.20                     |      |
| HMK316BC7155[]LHTE |               |               |                 | X7S    | 1.5 μ       | ±10, ±20      | 3.5   | 150               | 1.6±0.30                     |      |
| HMK316AC7225[]LHTE |               |               |                 | X7S    | 2.2 μ       | ±10, ±20      | 3.5   | 150               | 1.6±0.20                     |      |
| QMK316 B7223[]LHT  |               |               |                 | X7R    | 0.022 µ     | ±10, ±20      | 2.5   | 150               | 1.6±0.20                     |      |
| QMK316 B7333[]LHT  |               |               |                 | X7R    | 0.033 µ     | ±10, ±20      | 2.5   | 150               | 1.6±0.20                     |      |
| QMK316 B7473[]LHT  |               | 250           |                 | X7R    | 0.047 μ     | ±10, ±20      | 2.5   | 150               | 1.6±0.20                     |      |
| QMK316 B7683[]LHT  |               |               |                 | X7R    | 0.068 µ     | ±10, ±20      | 2.5   | 150               | 1.6±0.20                     |      |
| QMK316 B7104[]LHT  |               |               |                 | X7R    | 0.1 μ       | ±10, ±20      | 2.5   | 150               | 1.6±0.20                     |      |
| SMK316 B7153[]LHT  |               |               |                 | X7R    | 0.015 μ     | ±10, ±20      | 2.5   | 120               | 1.6±0.20                     |      |
| SMK316 B7223[]LHT  |               | 630           |                 | X7R    | 0.022 µ     | ±10, ±20      | 2.5   | 120               | 1.6±0.20                     |      |
| SMK316AB7333 LHT   |               | 030           |                 | X7R    | 0.033 µ     | ±10, ±20      | 2.5   | 120               | 1.6±0.20                     |      |
| SMK316AB7473 LHT   |               |               |                 | X7R    | 0.047 μ     | ±10, ±20      | 2.5   | 120               | 1.6±0.20                     |      |

# [Temperature Characteristic B7 : $X7R(-55 \sim + 125^{\circ}C)$ ] 1.15mm thickness(F)

| Part number 1     | Part number 2 | Rated voltage | Temperature<br>characteristics |     | Capacitance | Capacitance   | tan δ | HTLT              |                              | Note |
|-------------------|---------------|---------------|--------------------------------|-----|-------------|---------------|-------|-------------------|------------------------------|------|
| Part number 1     | Part number 2 | [V]           |                                |     | [F]         | tolerance [%] | [%]   | Rated voltage x % | Thickness <sup>*1</sup> [mm] | Note |
| SMK316 B7102[]FHT |               |               |                                | X7R | 1000 p      | ±10, ±20      | 2.5   | 120               | 1.15±0.10                    |      |
| SMK316 B7152[]FHT |               |               |                                | X7R | 1500 p      | ±10, ±20      | 2.5   | 120               | 1.15±0.10                    |      |
| SMK316 B7222[]FHT |               |               |                                | X7R | 2200 p      | ±10, ±20      | 2.5   | 120               | 1.15±0.10                    |      |
| SMK316 B7332[]FHT |               | 630           |                                | X7R | 3300 p      | ±10, ±20      | 2.5   | 120               | 1.15±0.10                    |      |
| SMK316 B7472[]FHT |               |               |                                | X7R | 4700 p      | ±10, ±20      | 2.5   | 120               | 1.15±0.10                    |      |
| SMK316 B7682[]FHT |               |               |                                | X7R | 6800 p      | ±10, ±20      | 2.5   | 120               | 1.15±0.10                    |      |
| SMK316 B7103[FHT  |               |               |                                | X7R | 0.01 µ      | ±10, ±20      | 2.5   | 120               | 1.15±0.10                    |      |

● 325TYPE (Dimension:3.2 × 2.5mm JIS:3225 EIA:1210)

[Temperature Characteristic B7 :  $X7R(-55 \sim + 125^{\circ}C)$ , C7 :  $X7S(-55 \sim + 125^{\circ}C)$ ] 2.5mm thickness(M)

| Part number 1      | Part number 2 | Rated voltage<br>[V] | rature<br>eristics | Capacitance<br>[F] | Capacitance<br>tolerance [%] | tan δ<br>[%] | HTLT<br>Rated voltage x % | Thickness <sup>*1</sup> [mm] | Note |
|--------------------|---------------|----------------------|--------------------|--------------------|------------------------------|--------------|---------------------------|------------------------------|------|
| HMK325 B7225[]MHP  |               | 100                  | X7R                | 2.2 μ              | ±10, ±20                     | 3.5          | 200                       | $2.5 \pm 0.20$               |      |
| HMK325 C7475[]MHPE |               | 100                  | X7S                | 4.7 μ              | ±10, ±20                     | 3.5          | 150                       | $2.5 \pm 0.20$               |      |

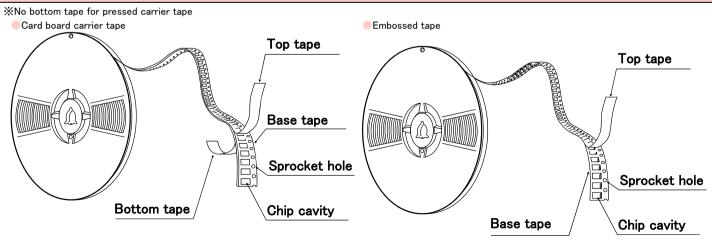
# [Temperature Characteristic B7 : $X7R(-55 \sim +125^{\circ}C)$ ] 1.9mm thickness(N)

| Part number 1     | Part number 2 | Rated voltage | Tempe                   | rature | Capacitance   | Capacitance | tan δ             | HTLT | Thickness <sup>*1</sup> [mm] | Note |
|-------------------|---------------|---------------|-------------------------|--------|---------------|-------------|-------------------|------|------------------------------|------|
| Part number 1     | Part number 2 | [V]           | characteristics [F] tol |        | tolerance [%] | [%]         | Rated voltage x % |      | NOLE                         |      |
| HMK325 B7224[]NHT |               |               |                         | X7R    | 0.22 µ        | ±10, ±20    | 3.5               | 200  | $1.9 \pm 0.20$               |      |
| HMK325 B7474[]NHT |               | 100           |                         | X7R    | 0.47 μ        | ±10, ±20    | 3.5               | 200  | $1.9 \pm 0.20$               |      |
| HMK325 B7684[]NHT |               | 100           |                         | X7R    | 0.68 µ        | ±10, ±20    | 3.5               | 200  | $1.9 \pm 0.20$               |      |
| HMK325 B7105[]NHT |               |               |                         | X7R    | 1 μ           | ±10, ±20    | 3.5               | 200  | 1.9±0.20                     |      |
| QMK325 B7473[]NHT |               |               |                         | X7R    | 0.047 μ       | ±10, ±20    | 2.5               | 150  | 1.9±0.20                     |      |
| QMK325 B7104[]NHT |               | 250           |                         | X7R    | 0.1 μ         | ±10, ±20    | 2.5               | 150  | 1.9±0.20                     |      |
| QMK325 B7154[]NHT |               | 230           |                         | X7R    | 0.15 μ        | ±10, ±20    | 2.5               | 150  | 1.9±0.20                     |      |
| QMK325 B7224[]NHT |               |               |                         | X7R    | 0.22 μ        | ±10, ±20    | 2.5               | 150  | 1.9±0.20                     |      |
| SMK325 B7223[]NHT |               |               |                         | X7R    | 0.022 µ       | ±10, ±20    | 2.5               | 120  | 1.9±0.20                     |      |
| SMK325 B7333[]NHT |               | 630           |                         | X7R    | 0.033 µ       | ±10, ±20    | 2.5               | 120  | 1.9±0.20                     |      |
| SMK325 B7473[]NHT |               |               |                         | X7R    | 0.047 μ       | ±10, ±20    | 2.5               | 120  | $1.9 \pm 0.20$               |      |

# **432TYPE** (Dimension:4.5 × 3.2mm JIS:4532 EIA:1812)

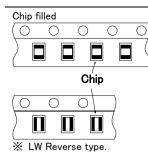
[Temperature Characteristic B7 :  $X7R(-55 \sim +125^{\circ}C)$ ] 2.5mm thickness(M)

| Part number 1     | Part number 2 | Rated voltage | e Temperature Capacitance |          | Capacitance | tan δ         | HTLT | Thickness <sup>*1</sup> [mm] N | Note           |      |
|-------------------|---------------|---------------|---------------------------|----------|-------------|---------------|------|--------------------------------|----------------|------|
|                   | Part number 2 | [V]           | charact                   | eristics | [F]         | tolerance [%] | [%]  | Rated voltage x %              | Thickness [mm] | Note |
| HMK432 B7474[]MHT |               |               |                           | X7R      | 0.47 μ      | ±10, ±20      | 3.5  | 200                            | $2.5 \pm 0.20$ |      |
| HMK432 B7105[]MHT |               | 100           |                           | X7R      | 1 μ         | ±10, ±20      | 3.5  | 200                            | $2.5 \pm 0.20$ |      |
| HMK432 B7155[]MHT |               | 100           |                           | X7R      | 1.5 μ       | ±10, ±20      | 3.5  | 200                            | $2.5 \pm 0.20$ |      |
| HMK432 B7225[]MHT |               |               |                           | X7R      | 2.2 μ       | ±10, ±20      | 3.5  | 200                            | $2.5 \pm 0.20$ |      |
| QMK432 B7104[]MHT |               |               |                           | X7R      | 0.1 µ       | ±10, ±20      | 2.5  | 150                            | 2.5±0.20       |      |
| QMK432 B7224[]MHT |               | 250           |                           | X7R      | 0.22 µ      | ±10, ±20      | 2.5  | 150                            | 2.5±0.20       |      |
| QMK432 B7334[]MHT |               | 230           |                           | X7R      | 0.33 µ      | ±10, ±20      | 2.5  | 150                            | 2.5±0.20       |      |
| QMK432 B7474[]MHT |               |               |                           | X7R      | 0.47 μ      | ±10, ±20      | 2.5  | 150                            | 2.5±0.20       |      |
| SMK432 B7473[]MHT |               |               |                           | X7R      | 0.047 μ     | ±10, ±20      | 2.5  | 120                            | 2.5±0.20       |      |
| SMK432 B7683[]MHT |               | 630           |                           | X7R      | 0.068 µ     | ±10, ±20      | 2.5  | 120                            | 2.5±0.20       |      |
| SMK432 B7104[]MHT |               |               |                           | X7R      | 0.1 μ       | ±10, ±20      | 2.5  | 120                            | $2.5 \pm 0.20$ |      |


# **Multilayer Ceramic Capacitors**

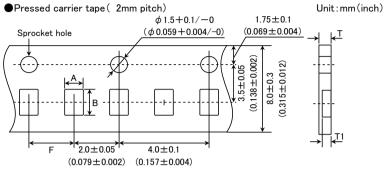
# ①Minimum Quantity

|                | Thick   | ness | Standard quantity [pcs] |                 |  |
|----------------|---------|------|-------------------------|-----------------|--|
| Type(EIA)      | mm      | code | Paper tape              | Embossed tape   |  |
| □MK021(008004) | 0.125   | К    | _                       | 50000           |  |
| □VS021(008004) | 0.125   | ĸ    |                         | 50000           |  |
| MK042(01005)   | 0.2     | C, D | _                       | 40000           |  |
| □VS042(01005)  | 0.2     | С    |                         | 40000           |  |
| □MK063(0201)   | 0.3     | P,T  | 15000                   | _               |  |
| □WK105(0204) 💥 | 0.3     | Р    | 10000                   | -               |  |
|                | 0.13    | Н    | _                       | 20000           |  |
|                | 0.18    | E    | _                       | 15000           |  |
| □MK105(0402)   | 0.2     | С    | 20000                   | -               |  |
| □MF105(0402)   | 0.3     | Р    | 15000                   | -               |  |
|                | 0.5     | V    | 10000                   | -               |  |
| □VK105(0402)   | 0.5     | W    | 10000                   | -               |  |
| DMK107(0603)   | 0.45    | К    | 4000                    | -               |  |
| □WK107(0306) ※ | 0.5     | V    | -                       | 4000            |  |
| □MF107(0603)   | 0.8     | Α    | 4000                    | -               |  |
| □VS107(0603)   | 0.7     | С    | 4000                    | -               |  |
| □MJ107(0603)   | 0.8     | А    | 3000                    | 3000            |  |
| □MK212(0805)   | 0.45    | К    | 4000                    | -               |  |
| □WK212(0508) 💥 | 0.85    | D    | 4000                    |                 |  |
| □MF212(0805)   | 1.25    | G    | _                       | 3000            |  |
| □VS212(0805)   | 0.85    | D    | 4000                    | _               |  |
|                | 0.85    | D    | 4000                    | _               |  |
| □MJ212(0805)   | 1.25    | G    | _                       | 2000            |  |
|                | 0.85    | D    | 4000                    | _               |  |
| □MK316(1206)   | 1.15    | F    | _                       | 3000            |  |
| □MF316(1206)   | 1.6     | L    | _                       | 2000            |  |
|                | 1.15    | F    | _                       | 3000            |  |
| □MJ316(1206)   | 1.6     | L    | _                       | 2000            |  |
|                | 0.85    | D    |                         |                 |  |
|                | 1.15    | F    | 1                       | 0000            |  |
| □MK325(1210)   | 1.9     | Ν    |                         | 2000            |  |
| □MF325(1210)   | 2.0max. | Y    | 1                       |                 |  |
|                | 2.5     | М    | —                       | 1000            |  |
|                | 1.9     | Ν    | -                       | 2000            |  |
| □MJ325(1210)   | 2.5     | М    | —                       | 500(T), 1000(P) |  |
| □MK432(1812)   | 2.5     | М    | -                       | 500             |  |


Note : 💥 LW Reverse type.

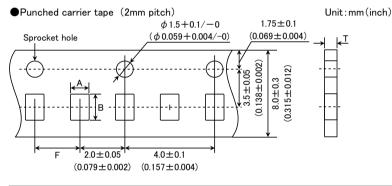
# ②Taping material




This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

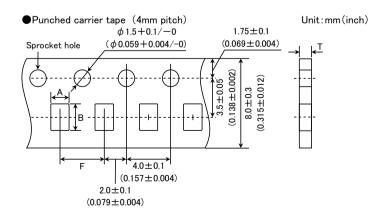
# TAIYO YUDEN




# ③Representative taping dimensions

# Paper Tape (8mm wide)



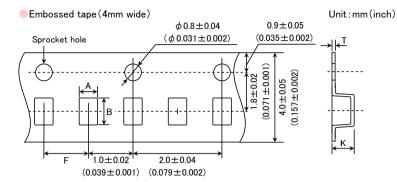

| Type(EIA)           | Chip | Cavity | Insertion Pitch | Tape Thickness |            |          |
|---------------------|------|--------|-----------------|----------------|------------|----------|
| Type(EIA)           | А    | В      | F               | Т              | T1         |          |
| □MK063(0201)        | 0.37 | 0.67   |                 | 0.45max.       | 0.40       |          |
| □WK105(0204) ※      |      | 1.15   | 0.0.1.0.05      | $2.0 \pm 0.05$ | 0.451118X. | 0.42max. |
| □MK105(0402) (*1 C) | 0.65 |        | 2.0±0.05        | 0.4max.        | 0.3max.    |          |
| □MK105(0402) (*1 P) |      |        |                 | 0.45max.       | 0.42max.   |          |

Note \*1 Thickness, C:0.2mm ,P:0.3mm. 💥 LW Reverse type.



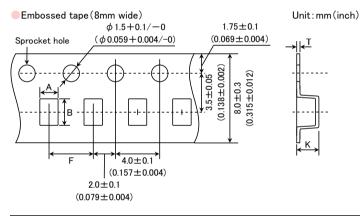
| Type(LA)         A         B         F         T           Improvement         Improvement | Type(EIA)     | Chip ( | Cavity | Insertion Pitch | Tape Thickness |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|--------|-----------------|----------------|
| □MF105 (0402) 0.65 1.15 2.0±0.05 0.8max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Type(EIA)     | A      | В      | F               | Т              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | □MF105 (0402) | 0.65   | 1.15   | 2.0±0.05        | 0.8max.        |

Unit:mm




This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).



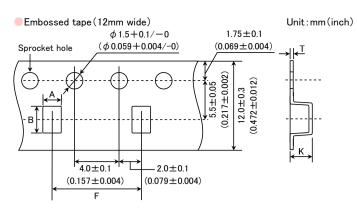

Unit : mm

| Type(EIA)               | Chip (                    | Cavity                   | Insertion Pitch    | Tape Thickness |  |
|-------------------------|---------------------------|--------------------------|--------------------|----------------|--|
| Type(EIA)               | А                         | В                        | F                  | Т              |  |
| □MK107(0603)            |                           |                          |                    |                |  |
| □WK107(0306) 💥          | 1.0                       | 1.8                      |                    | 1.1max.        |  |
| □MF107(0603)            |                           |                          | 40104              |                |  |
| □MK212(0805)            | 1.65                      | 0.4                      | 4.0±0.1            |                |  |
| □WK212(0508) 💥          | 1.00                      | 2.4                      |                    | 1.1max.        |  |
| □MK316(1206)            | 2.0                       | 3.6                      |                    |                |  |
| Note: Taping size might | be different depending on | the size of the product. | ※ LW Reverse type. | Unit : mm      |  |



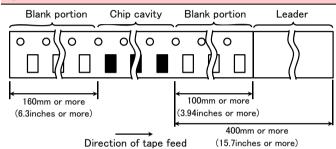
| Type(EIA)      | Chip ( | Cavity | Insertion Pitch | Tape Thickness |          |  |
|----------------|--------|--------|-----------------|----------------|----------|--|
| Type(EIA)      | А      | В      | F               | К              | Т        |  |
| □MK021(008004) | 0.135  | 0.27   | 1.0±0.02        |                | 0.25max. |  |
| □VS021(008004) | 0.135  |        |                 | 0.5max.        |          |  |
| □MK042(01005)  | 0.23   | 0.43   |                 |                |          |  |
| □VS042(01005)  | 0.23   | 0.43   |                 |                |          |  |

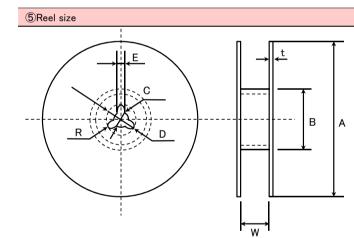
Unit : mm




| Type(EIA)                    | Chip ( | Cavity | Insertion Pitch | Insertion Pitch Tape Thickn |                |  |
|------------------------------|--------|--------|-----------------|-----------------------------|----------------|--|
| Type(EIA)                    | А      | В      | F               | K                           | Т              |  |
| □MK105(0402)                 | 0.6    | 1.1    | 2.0±0.1         | 0.6max                      | $0.2 \pm 0.1$  |  |
| □WK107(0306) ※               | 1.0    | 1.8    |                 | 1.3max.                     | $0.25 \pm 0.1$ |  |
| □MK212(0805)<br>□MF212(0805) | 1.65   | 2.4    | 4.0±0.1         |                             |                |  |
| □MK316(1206)<br>□MF316(1206) | 2.0    | 3.6    |                 | 3.4max.                     | 0.6max.        |  |
| □MK325(1210)<br>□MF325(1210) | 2.8    | 3.6    |                 |                             |                |  |

Note: 💥 LW Reverse type.


Unit : mm






| Type(EIA)    | Chip Cavity |     | Insertion Pitch | Tape Thickness |         |
|--------------|-------------|-----|-----------------|----------------|---------|
| Type(LIA)    | А           | В   | F               | К              | Т       |
| □MK325(1210) | 3.1         | 4.0 | 8.0±0.1         | 4.0max.        | 0.6max. |
| □MK432(1812) | 3.7         | 4.9 | 8.0±0.1         | 4.0max.        | 0.6max. |
|              |             |     |                 |                | Unit:mm |

### ④Trailer and Leader





| Α              | В               | С               | D                 | E       | R   |
|----------------|-----------------|-----------------|-------------------|---------|-----|
| φ178±2.0       | <i>ф</i> 50min. | $\phi$ 13.0±0.2 | <i>¢</i> 21.0±0.8 | 2.0±0.5 | 1.0 |
|                |                 |                 | _                 |         |     |
|                | Т               | W               |                   |         |     |
| 4mm wide tape  | 1.5max.         | 5±1.0           | -                 |         |     |
| 8mm wide tape  | 2.5max.         | 10±1.5          | -                 |         |     |
| 12mm wide tape | 2.5max.         | $14 \pm 1.5$    | Unit:mm           |         |     |

### 6 Top Tape Strength



> This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.

For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).



# Medium-High Voltage Multilayer Ceramic Capacitor

# RELIABILITY DATA

| 1. Operating Temperature Range |                                                                                                                                                             |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                | Temperature Compensating(High Frequency type)<br>CG(C0G) : -55 to +125°C                                                                                    |  |  |
| Specified Value                | High permittivity         X7R, X7S       : $-55$ to $+125^{\circ}$ C         X5       : $-55$ to $+85^{\circ}$ C         B       : $-25$ to $+85^{\circ}$ C |  |  |

| 2. Storage Temper | 2. Storage Temperature Range                                                                                 |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                   | Temperature Compensating(High Frequency type)<br>CG(C0G) : -55 to +125°C                                     |  |  |  |  |
| Specified Value   | High permittivityX7R, X7S: $-55$ to $+125^{\circ}$ CX5R: $-55$ to $+85^{\circ}$ CB: $-25$ to $+85^{\circ}$ C |  |  |  |  |

| 3. Rated Voltage |                                                       |
|------------------|-------------------------------------------------------|
| Specified Value  | 100VDC(HMK,HMJ), 250VDC(QMK,QMJ,QVS), 630VDC(SMK,SMJ) |

| 4. Withstanding Volt        | 4. Withstanding Voltage (Between terminals)            |                                                                                                                       |  |  |  |
|-----------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
| Specified Value             | No breakdown or damage                                 |                                                                                                                       |  |  |  |
| Test Methods and<br>Remarks | Applied voltage<br>Duration<br>Carge/discharge current | : Rated voltage×2.5(HMK,HMJ), Rated voltage×2(QMK,QMJ,QVS), Rated voltage×1.2(SMK,SMJ)<br>: 1 to 5sec.<br>: 50mA max. |  |  |  |

| 5. Insulation Resist        | 5. Insulation Resistance                                                                                                                                   |                                                                                   |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| Specified Value             | Temperature Compensating(High Frequency type)<br>10000M $\Omega$ min<br>High permittivity<br>100M $\Omega$ $\mu$ F or 10G $\Omega$ , whichever is smaller. |                                                                                   |  |  |
| Test Methods and<br>Remarks | Applied voltage<br>Duration<br>Charge/discharge current                                                                                                    | : Rated voltage(HMK,HMJ, QMK,QMJ,QVS), 500V(SMK,SMJ)<br>: 60±5sec.<br>: 50mA max. |  |  |

| 6. Capacitance (Tolerance)  |                                                                                                                                                                                                                     |                                                                   |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Specified Value             | Temperature Compensating(High Frequency type)<br>$\pm 0.1 pF (C < 5 pF) \pm 0.25 pF (C < 10 pF) \pm 0.5 pF (5 pF \le C < 10 pF) \pm 2\%(C=10 pF) \pm 5\%(C \ge 10 pF)$<br>High permittivity<br>$\pm 10\%, \pm 20\%$ |                                                                   |  |
| Test Methods and<br>Remarks | Temperature Compensatir<br>Measuring frequency<br>Measuring voltage<br>Bias application                                                                                                                             | ng(High Frequency type)<br>: 1MHz±10%<br>: 0.5 to 5Vrms<br>: None |  |
|                             | High permittivity<br>Measuring frequency<br>Measuring voltage<br>Bias application                                                                                                                                   | : 1kHz±10%<br>: 1±0.2Vrms<br>: None                               |  |



| Specified ValueTemperature Compensating(High Frequency type)<br>$C < 30pF : Q \ge 1400$ C:Normal Capacitance(/pF)Specified ValueHigh permittivity<br>$3.5\%max(HMK,HMJ)$<br>$2.5\%max(QMK,QMJ,SMK,SMJ)$ Simmax(High Frequency type)<br>Measuring requency<br>$1.0\%max(1.0\%mx)$ Test Methods and<br>RemarksTemperature Compensating(High Frequency type)<br>Measuring voltage<br>$1.0\%mx$ Simmax(High Frequency type)<br>$1.0\%mx$ High permittivity<br>Measuring voltage<br>$2.5\%mx$ $1.0\%mx$ Simmax(High Frequency type)<br>$1.0\%mx$ RemarksHigh permittivity<br>Measuring voltage<br>$2.5\%mx$ $1.0\%mx$ Bas application<br>$3.5\%mx$ $1.0\%mx$ Specified ValueTemperature Compensating(High Frequency type)<br>$COG$<br>$1.2\%mx$ $1.0\%mx$ Specified ValueHigh permittivity<br>$B$<br>$1.2\%mx$ $1.2\%mx$ Specifie |                                                                                                                                                                                                            |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                            |  |  |  |  |
| High permittivity         3.5%max (HMK,HMJ)         2.5%max (QMK,QMJ, SMK,SMJ)         Temperature Compensating(High Frequency type)         Measuring frequency       1 MHz±10%         Measuring voltage       : 0.5 to 5Vrms         Bas application       : None         High permittivity       Measuring frequency         Measuring requency       : 1 kHz±10%         Measuring requency       : 1 kHz±10%         Measuring requency       : 1 kHz±10%         Measuring voltage       : 1 ±0.2Vrms         Bas application       : None         8.       Temperature Compensating(High Frequency type)         COG       :: ±10%(-25 to +125°C)         Specified Value       High permittivity<br>B       : ±10%(-25 to +85°C)         Specified Value       High permittivity<br>B       : ±10%(-25 to +85°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |  |  |  |  |
| 3.5%max(HMK,HMJ)         2.5%max(QMK,QMJ, SMK,SMJ)         Temperature Compensating(High Frequency type)         Measuring frequency       : 1MHz±10%         Measuring voltage       : 0.5 to 5Vrms         Bas application       : None         High permittivity         Measuring voltage       : 1±0.2Vrms         Bas application       : None         8. Temperature Characteristic of Capacitance         Temperature Compensating(High Frequency type)         COG       :±30ppm(25 to +125°C)         Specified Value       High permittivity         Bas       :±10%(-25 to +85°C)         X5R       :±15%(-55 to +85°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                            |  |  |  |  |
| 2.5%max (QMK,QMJ, SMK,SMJ)         Temperature Compensating(High Frequency type)         Measuring frequency : 1MHz±10%         Measuring voltage : 0.5 to 5Vrms         Bas application : None         High permittivity         Measuring voltage : 1±0%         Measuring voltage : 1±0.2Vrms         Bas application : None         Specified Value         High permittivity         Bas : ±10% (-25 to +85°C)         XSR : ±15% (-55 to +85°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |  |  |  |  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |  |  |  |  |
| Test Methods and<br>RemarksMeasuring voltage $: 0.5 \text{ to 5Vrms}$<br>Bas applicationHigh permittivity<br>Measuring frequency $: 1 \text{kHz} \pm 10\%$<br>Measuring voltageBas application $: 1 \pm 0.2 \text{Vrms}$<br>Bas application8. Temperature Characteristic of CapacitanceTemperature Compensating(High Frequency type)<br>COGCOG $: \pm 30 \text{ppm}(25 \text{ to } + 125^{\circ}\text{C})$ High permittivity<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |  |  |  |  |
| Test Methods and<br>RemarksBas application: NoneHigh permittivity<br>Measuring frequency: 1kHz $\pm$ 10%<br>Measuring voltage: 1 $\pm$ 0.2Vrms<br>Bas applicationBas application: NoneStemperature ChapacitanceTemperature Compensating(High Frequency type)<br>COGCOG: $\pm$ 30ppm(25 to $\pm$ 125°C)High permittivity<br>BB: $\pm$ 10%(-25 to $\pm$ 85°C)<br>X5RX5R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |  |  |  |  |
| Test Methods and<br>Remarks       High permittivity<br>Measuring frequency : 1kHz±10%<br>Measuring voltage : 1±0.2Vrms<br>Bas application : None         8. Temperature Characteristic of Capacitance         Temperature Compensating(High Frequency type)<br>COG :±30ppm(25 to +125°C)         Specified Value       High permittivity<br>B : ±10%(-25 to +85°C)<br>X5R : ±15%(-55 to +85°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |  |  |  |  |
| High permittivity<br>Measuring frequency: 1kHz±10%<br>Measuring voltageMeasuring voltage: 1±0.2Vrms<br>Bas applicationBas application: None8. Temperature Characteristic of CapacitanceCOG: ± 30ppm (25 to +125°C)High permittivity<br>B: ± 10%(-25 to +85°C)<br>X5R: ± 15%(-55 to +85°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |  |  |  |  |
| Measuring voltage       : 1±0.2Vrms         Bas application       : None         8. Temperature Characteristic of Capacitance         Temperature Compensating(High Frequency type)         COG       :±30ppm(25 to +125°C)         Specified Value       High permittivity<br>B       :±10%(-25 to +85°C)         X5R       :±15%(-55 to +85°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |  |  |  |  |
| Bas application       : None         8. Temperature Characteristic of Capacitance         Specified Value       Temperature Compensating(High Frequency type)<br>COG         Specified Value       High permittivity<br>B         : ± 10%(-25 to +85°C)<br>X5R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |  |  |  |  |
| $\begin{array}{l} \mbox{Temperature Compensating(High Frequency type)}\\ \mbox{C0G} & :\pm 30 \mbox{ppm}(25 \ to \ + 125^{\circ}\mbox{C}) \\ \mbox{High permittivity}\\ \mbox{B} & :\pm 10\%(-25 \ to \ + 85^{\circ}\mbox{C}) \\ \mbox{X5R} & :\pm 15\%(-55 \ to \ + 85^{\circ}\mbox{C}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |  |  |  |  |
| $\label{eq:specifiedValue} \begin{array}{l} \mbox{Temperature Compensating(High Frequency type)}\\ \mbox{C0G} & :\pm 30 \mbox{ppm}(25 \ to \ + 125^{\circ}\mbox{C}) \\ \mbox{High permittivity}\\ \mbox{B} & :\pm 10\%(-25 \ to \ + 85^{\circ}\mbox{C}) \\ \mbox{X5R} & :\pm 15\%(-55 \ to \ + 85^{\circ}\mbox{C}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                            |  |  |  |  |
| Specified Value<br>$COG := \pm 30 ppm(25 to + 125^{\circ}C)$<br>High permittivity<br>$B := \pm 10\%(-25 to + 85^{\circ}C)$<br>$X5R := \pm 15\%(-55 to + 85^{\circ}C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |  |  |  |  |
| Specified Value High permittivity<br>B : $\pm 10\%(-25 \text{ to } +85^{\circ}\text{C})$<br>X5R : $\pm 15\%(-55 \text{ to } +85^{\circ}\text{C})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |  |  |  |  |
| Specified Value<br>B : $\pm 10\%(-25 \text{ to } +85^{\circ}\text{C})$<br>X5R : $\pm 15\%(-55 \text{ to } +85^{\circ}\text{C})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                            |  |  |  |  |
| X5R : $\pm 15\%(-55 \text{ to } +85^{\circ}\text{C})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X7R : $\pm 15\%(-55 \text{ to } + 125^{\circ}\text{C})$                                                                                                                                                    |  |  |  |  |
| X7S : ±22%(-55 to +125°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |  |  |  |  |
| Temperature Compensating(High Frequency type)<br>Capacitance at 25°C and 85°C shall be measured in thermal equilibrium, and the temperature characteristic shall be ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Temperature Compensating(High Frequency type)<br>Consistence at $25^{\circ}$ C and $85^{\circ}$ C shall be measured in thermal equilibrium and the temperature characteristic shall be calculated from the |  |  |  |  |
| following equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                            |  |  |  |  |
| $\frac{(C_{85}-C_{25})}{C_{25}\times\Delta T} \times 10^6 \times [\text{ppm/}^{\circ}\text{C}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{(C_{85}-C_{25})}{2} \times 10^{6} \times [ppm/^{\circ}C]$                                                                                                                                           |  |  |  |  |
| $G_{25} \star \Delta I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                            |  |  |  |  |
| High permittivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |  |  |  |  |
| Test Methods and following equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | alculated from the                                                                                                                                                                                         |  |  |  |  |
| Remarks Step B X5R, X7R, X7S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                            |  |  |  |  |
| 1 Minimum operating tempeature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |  |  |  |  |
| 2     20°C     25°C       3     Maximum operating temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                            |  |  |  |  |
| $\frac{(C-C_2)}{2}$ × 100 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                            |  |  |  |  |
| C <sub>2</sub><br>C : Capacitance value in Step 1 or Step 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
| C2 : Capacitance value in Step 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                            |  |  |  |  |
| 9. Deflection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                            |  |  |  |  |
| Temperature Compensating(High Frequency type) Appearance : No abnormality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |  |  |  |  |
| Capacitance change : $\pm 5\%$ or $\pm 0.5$ pF, whichever is larger.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                            |  |  |  |  |
| Specified Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                            |  |  |  |  |
| High permittivity Appearance : No abnormality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                            |  |  |  |  |
| Capacitance change : Within±10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                            |  |  |  |  |
| Warp : 1mm (Soft Termination type:3mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                            |  |  |  |  |
| Duration : 10sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |  |  |  |  |
| Test Methods and Thicknss : 1.6mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                            |  |  |  |  |
| Remarks $45\pm2$ $45\pm2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |  |  |  |  |

Capacitance measurement shall be conducted with the board bent.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

(Unit: mm)

| 10. Adhesive Stren          | 10. Adhesive Strength of Terminal Electrodes                                                                                                                                                                  |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Specified Value             | No terminal separation or its indication.                                                                                                                                                                     |  |  |
| Test Methods and<br>Remarks | Temperature Compensating(High Frequency type)         Applied force       : 2N         Duration       : 10±1sec.         High permittivity         Applied force       : 5N         Duration       : 30±5sec. |  |  |

| 11. Solderability |                                                             |                 |                  |  |
|-------------------|-------------------------------------------------------------|-----------------|------------------|--|
| Specified Value   | At least 95% of terminal electrode is covered by new solder |                 |                  |  |
|                   |                                                             | Eutectic solder | Lead-free solder |  |
| Test Methods and  | Solder type                                                 | H60A or H63A    | Sn-3.0Ag-0.5Cu   |  |
| Remarks           | Solder temperature                                          | 230±5°C         | 245±3°C          |  |
|                   | Duration                                                    | 4±1             | sec.             |  |

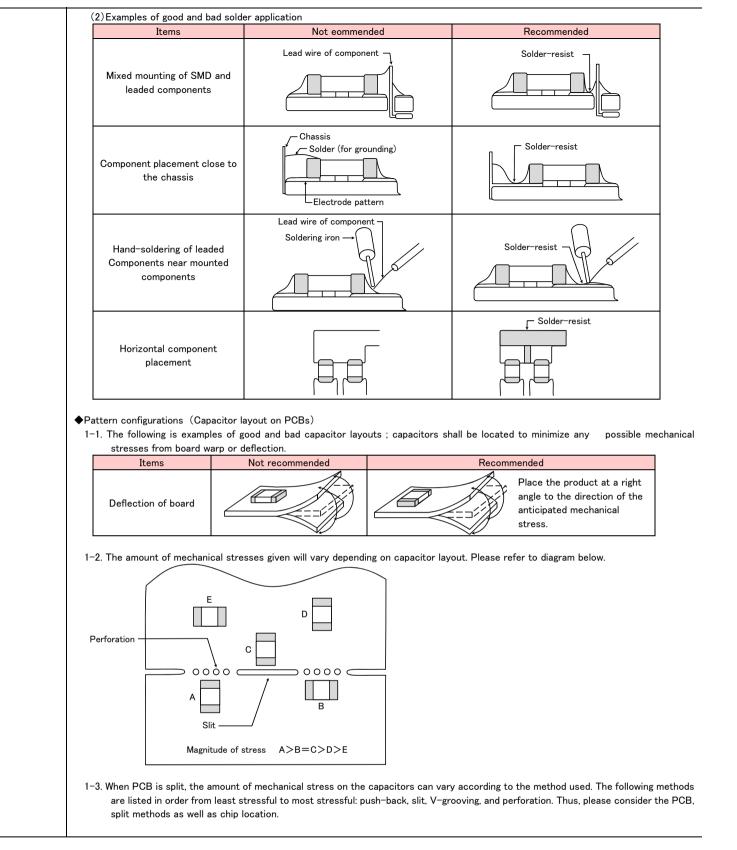
| 12. Resistance to S         | Soldering                                     |                                                                       |  |
|-----------------------------|-----------------------------------------------|-----------------------------------------------------------------------|--|
|                             | Temperature Compensating(High Frequency type) |                                                                       |  |
|                             | Appearance                                    | : No abnormality                                                      |  |
|                             | Capacitance change                            | : C※≦10pF :±0.25pF C※>10pF :±2.5% ※Normal capacitance                 |  |
|                             | Insulation resistance                         | : Initial value                                                       |  |
|                             | Withstanding voltage                          | (between terminals) : No abnormality                                  |  |
| Specified Value             | High permittivity                             |                                                                       |  |
|                             | Appearance                                    | : No abnormality                                                      |  |
|                             | Capacitance change                            | : Within±15%(HMK,HMJ), ±10%(QMK,QMJ, SMK,SMJ)                         |  |
|                             | Dissipation factor                            | : Inital value                                                        |  |
|                             | Insulation resistance                         | : Initial value                                                       |  |
|                             | Withstanding voltage                          | (between terminals) : No abnormality                                  |  |
|                             | Preconditioning                               | : Thermal treatment (at 150°C for 1hr) Note1 (Only High permittivity) |  |
| Test Methods and<br>Remarks | Solder temperature                            | : 270±5℃                                                              |  |
|                             | Duration                                      | : 3±0.5sec.                                                           |  |
| Remarks                     | Preheating conditions                         | : 80 to 100°C, 2 to 5 min. 150 to 200°C, 2 to 5min.                   |  |
|                             | Recovery                                      | : 24 $\pm$ 2hrs under the stadard condition Note3                     |  |

| 13. Temperature Cycle (Thermal Shock) |                                                           |                                               |                                      |  |  |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------|--------------------------------------|--|--|
|                                       | Temperature Compe                                         | Temperature Compensating(High Frequency type) |                                      |  |  |
|                                       | Appearance                                                | : No abnormality                              |                                      |  |  |
|                                       | Capacitance change                                        | : C※≦10pF :±0.25% C※>10pF :=                  | ±2.5%                                |  |  |
|                                       | Insulation resistance                                     | : Initial value                               | : Initial value                      |  |  |
|                                       | Withstanding voltage                                      | (between terminals) : No abnormality          | (between terminals) : No abnormality |  |  |
| Specified Value                       | High permittivity                                         |                                               |                                      |  |  |
|                                       | Appearance                                                | : No abnormality                              |                                      |  |  |
|                                       | Capacitance change                                        | :Within±15%(HMK,HMJ), ±7.5%(QMK,QMJ, SMK,SMJ) |                                      |  |  |
|                                       | Dissipation factor                                        | : Initial value                               |                                      |  |  |
|                                       | Insulation resistance                                     | : Initial value                               |                                      |  |  |
|                                       | Withstanding voltage (between terminals) : No abnormality |                                               |                                      |  |  |
|                                       | Preconditioning : The                                     | ermal treatment (at 150°C for 1hr) Note       | 1                                    |  |  |
|                                       | Conditions for 1 cycle                                    |                                               |                                      |  |  |
|                                       | Step                                                      | temperature(°C)                               | Time(min.)                           |  |  |
| Tast Matheda and                      | 1                                                         | Minimum operating temperature                 | $30\pm 3$ min.                       |  |  |
| Test Methods and                      | 2                                                         | Normal temperature                            | 2 to 3min.                           |  |  |
| Remarks                               | 3                                                         | Maximum operating temperature                 | 30±3min.                             |  |  |
|                                       | 4                                                         | Normal temperature                            | 2 to 3min.                           |  |  |
|                                       | Number of cycles : 5                                      | times                                         |                                      |  |  |
|                                       | Recovery : 24±2hrs                                        | under the standard condition Note3            |                                      |  |  |

| 14. Humidity (Steady state) |                         |                                                                                  |  |
|-----------------------------|-------------------------|----------------------------------------------------------------------------------|--|
|                             | Temperature Compensatin |                                                                                  |  |
|                             | Appearance              | : No abnormality                                                                 |  |
|                             | Capacitance change      | : C※≦10pF :±0.5pF C※>10pF :±5% ※Normal capacitance                               |  |
|                             | Insulation resistance   | : 1000M Ω min                                                                    |  |
| Specified Value             | High permittivity       |                                                                                  |  |
|                             | Appearance              | : No abnormality                                                                 |  |
|                             | Capacitance change      | : Within±15%                                                                     |  |
|                             | Dissipation factor      | : 7%max(HMK,HMJ), 5%max(QMK,QMJ, SMK,SMJ).                                       |  |
|                             | Insulation resistance   | : 25M $\Omega$ $\mu$ F or 1000M $\Omega$ , whichever is smaller.                 |  |
|                             | Preconditioning         | : Thermal treatment (at 150 $^{\circ}$ C for 1hr) Note1 (Only High permittivity) |  |
| Test Methods and            | Temperature             | : 40±2℃                                                                          |  |
| Remarks                     | Humidity                | : 90 to 95%RH                                                                    |  |
| Remarks                     | Duration                | : 500 +24/-0 hrs                                                                 |  |
|                             | Recovery                | : 24 $\pm$ 2hrs under the standard condition Note3                               |  |

| 15. Humidity Loadir | ng                                            |                                                                       |  |
|---------------------|-----------------------------------------------|-----------------------------------------------------------------------|--|
|                     | Temperature Compensating(High Frequency type) |                                                                       |  |
|                     | Appearance                                    | : No abnormality                                                      |  |
|                     | Capacitance change                            | :C‰≦2.0pF:±0.4pF 2.0pF <c≦10pf: c‰="" ±0.75pf="">10pF:±7.5%</c≦10pf:> |  |
|                     |                                               | : ※Normal capacitance                                                 |  |
|                     | Insulation resistance                         | : 500M Ω min                                                          |  |
| Specified Value     |                                               |                                                                       |  |
|                     | High permittivity                             |                                                                       |  |
|                     | Appearance                                    | : No abnormality                                                      |  |
|                     | Capacitance change                            | : Within土15%                                                          |  |
|                     | Dissipation factor                            | : 7%max(HMK,HMJ), 5%max(QMK,QMJ, SMK,SMJ).                            |  |
|                     | Insulation resistance                         | : 10M $\Omega$ $\mu$ F or 500M $\Omega$ , whichever is smaller.       |  |
|                     | According to JIS 5102 claus                   | e 9.9.                                                                |  |
|                     | Preconditioning                               | : Voltage treatment Note2 (Only High permittivity)                    |  |
|                     | Temperature                                   | : 40±2°C                                                              |  |
| Test Methods and    | Humidity                                      | : 90 to 95%RH                                                         |  |
| Remarks             | Applied voltage                               | : Rated voltage                                                       |  |
|                     | Charge/discharge current                      | : 50mA max.                                                           |  |
|                     | Duration                                      | : 500 + 24/-0 hrs                                                     |  |
|                     | Recovery                                      | : 24 $\pm$ 2hrs under the standard condition Note3                    |  |

| 16. High Temperatu       | ire Loading                                                                                                                                                 |                                                                                                                                                                  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                          | Temperature Compensating(High Frequency type)                                                                                                               |                                                                                                                                                                  |  |  |
|                          | Appearance                                                                                                                                                  | : No abnormality                                                                                                                                                 |  |  |
|                          | Capacitance change                                                                                                                                          | : C※≦10pF :±0.3pF C※>10pF :±3%                                                                                                                                   |  |  |
|                          | Insulation resistance                                                                                                                                       | :1000M Ω min                                                                                                                                                     |  |  |
| Specified Value          |                                                                                                                                                             |                                                                                                                                                                  |  |  |
|                          | High permittivity                                                                                                                                           |                                                                                                                                                                  |  |  |
|                          | Appearance                                                                                                                                                  | : No abnormality                                                                                                                                                 |  |  |
|                          | Capacitance change                                                                                                                                          | : Within±15%                                                                                                                                                     |  |  |
|                          | Dissipation factor                                                                                                                                          | : 7%max(HMK,HMJ), 5%max(QMK,QMJ, SMK,SMJ).                                                                                                                       |  |  |
|                          | Insulation resistance                                                                                                                                       | : 50M Ω $\mu$ F or 1000M Ω, whichever is smaller.                                                                                                                |  |  |
|                          | According to JIS 5102 clause 9.10.                                                                                                                          |                                                                                                                                                                  |  |  |
|                          | Preconditioning                                                                                                                                             | : Voltage treatment Note2 (Only High permittivity)                                                                                                               |  |  |
| Test Methods and         | Temperature                                                                                                                                                 | : Maximum operating temperature                                                                                                                                  |  |  |
| Remarks                  | Applied voltage                                                                                                                                             | : Rated voltage × 2(HMK,HMJ,QVS) Rated voltage × $1.5$ (QMK,QMJ) Rated voltage × $1.2$ (SMK,SMJ)                                                                 |  |  |
| Remarks                  | Charge/discharge current                                                                                                                                    | : 50mA max.                                                                                                                                                      |  |  |
|                          | Duration                                                                                                                                                    | : 1000 +24/-0 hrs                                                                                                                                                |  |  |
|                          | Recovery                                                                                                                                                    | : 24 $\pm$ 2hrs under the standard condition Note3                                                                                                               |  |  |
| Note1 Thermal treatm     | ent : Initial value shall be measure                                                                                                                        | d after test sample is heat-treated at 150 $+$ 0 $/-$ 10 $^{\circ}$ C for an hour and kept at room temperature                                                   |  |  |
|                          | for $24\pm 2$ hours.                                                                                                                                        |                                                                                                                                                                  |  |  |
| Note2 Voltage treatme    | Note2 Voltage treatment : Initial value shall be measured after test sample is voltage-treated for an hour at both the temperature and voltage specified in |                                                                                                                                                                  |  |  |
| Nata 2 Otan david a sudi |                                                                                                                                                             | d kept at room temperature for 24±2hours.                                                                                                                        |  |  |
| Note3 Standard condit    |                                                                                                                                                             | elative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa<br>concerning measurement results, in order to provide correlation data, the test shall be conducted |  |  |
|                          | under the following condition                                                                                                                               |                                                                                                                                                                  |  |  |
|                          | •                                                                                                                                                           | ative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa                                                                                                        |  |  |
|                          | Unless otherwise specified,                                                                                                                                 | all the tests are conducted under the "standard condition".                                                                                                      |  |  |




# Precautions on the use of Multilayer Ceramic Capacitors

PRECAUTIONS

| . Circuit Design |                                                                                                                                                                                                                          |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                  | ◆Verification of operating environment, electrical rating and performance                                                                                                                                                |  |  |
|                  | 1. A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have<br>severe social ramifications.                                                   |  |  |
|                  | Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from them used in general purpose applications.                                    |  |  |
| Precautions      | ♦ Operating Voltage (Verification of Rated voltage)                                                                                                                                                                      |  |  |
|                  | 1. The operating voltage for capacitors must always be their rated voltage or less.                                                                                                                                      |  |  |
|                  | If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less.                                                                                                         |  |  |
|                  | For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less.                                                                                        |  |  |
|                  | 2. Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC voltage or a pulse voltage having rapid rise time is used in a circuit. |  |  |

| 2. PCB Design               |                   |                                                                 |                |                  |                   |                     |                  |                                |                   |
|-----------------------------|-------------------|-----------------------------------------------------------------|----------------|------------------|-------------------|---------------------|------------------|--------------------------------|-------------------|
|                             | ♦Pattern config   | urations (Design                                                | of Land-patt   | erns)            |                   |                     |                  |                                |                   |
|                             | 1. When capao     | citors are mount                                                | ed on PCBs,    | the amount o     | f solder used     | (size of fillet) of | can directly aff | ect the capaci                 | or performance.   |
|                             | Therefore,        | the following iter                                              | ns must be ca  | arefully conside | ered in the des   | ign of land patter  | ms:              |                                |                   |
|                             | (1)Excess         | ive solder applie                                               | d can cause    | mechanical st    | resses which      | lead to chip bre    | aking or crack   | ing. Therefore,                | please consider   |
|                             | appro             | opriate land-patte                                              | erns for prope | er amount of s   | older.            |                     |                  |                                |                   |
| Precautions                 | (2)When n         | nore than one co                                                | mponent are    | jointly soldere  | d onto the sam    | ie land, each con   | nponent's solde  | ring point shall               | be separated by   |
|                             |                   | er-resist.                                                      |                |                  |                   |                     |                  |                                |                   |
|                             | -                 | urations (Capaci                                                | -              |                  |                   |                     |                  |                                | (                 |
|                             |                   | rs are mounted o                                                |                |                  |                   |                     | -                |                                |                   |
|                             | -                 | inspection, moun <sup>.</sup><br>urations and posi <sup>.</sup> | -              | -                | -                 |                     | -                | ards, etc.). For               | this reason, land |
|                             |                   |                                                                 |                |                  | carefully consid  |                     | e stresses.      |                                |                   |
|                             | -                 | urations (Design                                                |                |                  |                   |                     |                  |                                |                   |
|                             |                   | diagrams and tabl                                               |                | -                |                   | land patterns to    | prevent excess   | ive solder amol                | ints.             |
|                             |                   | ended land dimens                                               |                |                  |                   |                     | l and nat        | torno for DCPo                 |                   |
|                             | (unit: mm)        | r Ceramic Capaci                                                | Lors : Recomi  | nended land di   | mensions          |                     | Land pat         | terns for PCBs<br>Land pattern |                   |
|                             | Wave-sol          | dering                                                          |                |                  |                   |                     | Ohin and         | i i                            | Solder-resist     |
|                             | Туре              | 107                                                             | 212            | 316              | 325               |                     | Chip cap         |                                |                   |
|                             | 1900              | 1.6                                                             | 2.0            | 3.2              | 3.2               | -t                  | ┥┝╌┲╗┼           | ╶┌┲╍┱┵┥╞╾                      | )                 |
|                             | Size W            | 0.8                                                             | 1.25           | 1.6              | 2.5               | c (                 |                  |                                | $\langle \rangle$ |
|                             | A                 | 0.8 to 1.0                                                      | 1.0 to 1.4     | 1.8 to 2.5       | 1.8 to 2.5        |                     |                  |                                | -                 |
|                             | В                 | 0.5 to 0.8                                                      | 0.8 to 1.5     | 0.8 to 1.7       | 0.8 to 1.7        |                     | ← → ← A          | → <del>← →</del>               |                   |
|                             | C                 | 0.6 to 0.8                                                      | 0.9 to 1.2     | 1.2 to 1.6       | 1.8 to 2.5        |                     |                  |                                |                   |
|                             |                   | 1 1                                                             |                |                  |                   |                     | Chin an          | nacitor                        |                   |
|                             |                   |                                                                 |                |                  |                   |                     | Chip ca          |                                |                   |
|                             |                   |                                                                 |                |                  |                   |                     |                  | w                              |                   |
|                             |                   |                                                                 |                |                  |                   |                     |                  |                                |                   |
|                             |                   |                                                                 |                |                  |                   |                     | ·                | <b>,</b>                       |                   |
|                             | D-flow a          | - Laboration and                                                |                |                  |                   |                     | 1 L              | .                              |                   |
| Technical<br>considerations | Reflow-so<br>Type | 042                                                             | 063            | 105              | 107               | 212                 | 316              | 325                            | 432               |
| considerations              | Type              | 0.4                                                             | 0.6            | 1.0              | 1.6               | 2.0                 | 3.2              | 3.2                            | 4.5               |
|                             | Size W            | 0.2                                                             | 0.3            | 0.5              | 0.8               | 1.25                | 1.6              | 2.5                            | 3.2               |
|                             | A                 | 0.15 to 0.25                                                    | 0.20 to 0.30   | 0.45 to 0.55     | 0.8 to 1.0        | 0.8 to 1.2          | 1.8 to 2.5       | 1.8 to 2.5                     | 2.5 to 3.5        |
|                             | В                 | 0.15 to 0.20                                                    | 0.20 to 0.30   | 0.40 to 0.50     | 0.6 to 0.8        | 0.8 to 1.2          | 1.0 to 1.5       | 1.0 to 1.5                     | 1.5 to 1.8        |
|                             | C                 | 0.15 to 0.30                                                    | 0.25 to 0.40   | 0.45 to 0.55     | 0.6 to 0.8        | 0.9 to 1.6          | 1.2 to 2.0       | 1.8 to 3.2                     | 2.3 to 3.5        |
|                             | Note:Reco         | ommended land si                                                | ze might be d  |                  | ding to the allow | wance of the size   |                  | t.                             | 11                |
|                             |                   |                                                                 |                |                  |                   |                     |                  |                                |                   |
|                             |                   |                                                                 |                |                  |                   |                     |                  |                                |                   |
|                             | ●LWDC: F          | Recommended lan                                                 | nd dimensions  | for reflow-sol   | dering            |                     | LWD              | с                              |                   |
|                             | (unit: mm)        |                                                                 |                |                  |                   |                     |                  |                                |                   |
|                             | Туре              | 105                                                             | 107            | 21:              | 2                 |                     |                  |                                |                   |
|                             | Size L            | 0.52                                                            | 0.8            | 1.2              | 5                 |                     |                  | w                              |                   |
|                             | W                 | 1.0                                                             | 1.6            | 2.0              |                   |                     |                  |                                |                   |
|                             | A                 | 0.18 to 0.22                                                    | 0.25 to 0      |                  |                   |                     |                  |                                |                   |
|                             | В                 | 0.2 to 0.25                                                     | 0.3 to 0.      |                  |                   |                     | Ļ                |                                |                   |
|                             | С                 | 0.9 to 1.1                                                      | 1.5 to 1.      | 7 1.9 to         | 2.1               |                     | L                | I                              |                   |
|                             | 1                 |                                                                 |                |                  |                   |                     |                  |                                |                   |

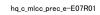


| 3. Mounting |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precautions | <ul> <li>Adjustment of mounting machine         <ol> <li>When capacitors are mounted on PCB, excessive impact load shall not be imposed on them.</li> <li>Maintenance and inspection of mounting machines shall be conducted periodically.</li> </ol> </li> <li>Selection of Adhesives         <ol> <li>When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked : size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information.</li> </ol> </li> </ul> |

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.

For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/)

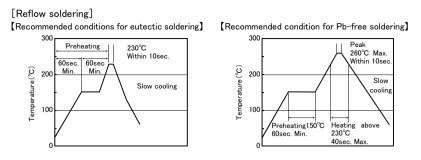



|                             | this, the following points shall be<br>(1)The bottom dead center of th<br>(2)The pressure of nozzle shall b<br>(3)To reduce the amount of defle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | considerable.<br>le pick-up nozzle shall be adjusted to the solution<br>be adjusted between 1 and 3 N static loads<br>action of the board caused by impact of the                                                                                                                                                                                                                                                                                                                                                           | e is imposed on capacitors and causes damages. To avoid<br>surface level of PCB without the board deflection.<br>s.<br>e pick-up nozzle, supporting pins or back-up pins shall be<br>some typical examples of good and bad pick-up nozzle |  |  |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                             | Items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Recommended                                                                                                                                                                                                                               |  |  |  |  |
|                             | Single-sided mounting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | chipping<br>or cracking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | supporting pins -<br>or back-up pins                                                                                                                                                                                                      |  |  |  |  |
|                             | Double-sided mounting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | chipping /<br>or cracking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | supporting pins<br>or back-up pins                                                                                                                                                                                                        |  |  |  |  |
| Technical<br>considerations | impact on the capacitors.<br>To avoid this, the monitoring of the pin shall be conducted period<br>Selection of Adhesives<br>Some adhesives may cause IR detering<br>stresses on the capacitors and lead<br>components. Therefore, the following<br>(1) Required adhesive characteristic<br>a. The adhesive shall be strong<br>b. The adhesive shall be strong<br>b. The adhesive shall have suff<br>c. The adhesive shall have good<br>d. The adhesive shall have good<br>d. The adhesive shall have corr<br>g. The adhesive shall have corr<br>g. The adhesive shall have excer<br>h. The adhesive shall have no excert<br>for the | he width between the alignment pins in the<br>lically.<br>oration. The different shrinkage percentage<br>to cracking. Moreover, too little or too r<br>precautions shall be noted in the applicat<br>cs<br>genough to hold parts on the board during<br>icient strength at high temperatures.<br>d coating and thickness consistency.<br>during its prescribed shelf life.<br>apidly.<br>osion resistance.<br>ellent insulation characteristics.<br>emission of toxic gasses and no effect on the<br>besives is as follows; | e stopped position, maintenance, check and replacement of<br>e of between the adhesive and the capacitors may result in<br>much adhesive applied to the board may adversely affect<br>ion of adhesives.<br>the mounting & solder process. |  |  |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mm minto 120 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           |  |  |  |  |
|                             | Chipping or cracking supporting pins or back-up pins     supporting pins     or back-up pins     or b                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           |  |  |  |  |

| Precautions                 | <ul> <li>Selection of Flux</li> <li>Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use;</li> <li>(1) Flux used shall be less than or equal to 0.1 wt%( in Cl equivalent) of halogenated content. Flux having a strong acidity content shal not be applied.</li> <li>(2) When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level.</li> <li>(3) When water-soluble flux is used, special care shall be taken to properly clean the boards.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | <ul> <li>Soldering</li> <li>Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions.</li> <li>Sn-Zn solder paste can adversely affect MLCC reliability.</li> <li>Please contact us prior to usage of Sn-Zn solder.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Technical<br>considerations | <ul> <li>Selection of Flux</li> <li>1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead to corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors.</li> <li>1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitted and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system</li> <li>1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors in high humidity conditions may cause a degradation of insulation resistance and reliability of the capacitors. Therefore, the cleaning methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used.</li> </ul> |

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Adhesives shall not contact land


с

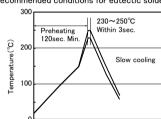


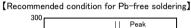


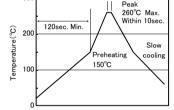
### ♦ Soldering

- · Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling.
- Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock.
- Preheating : Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be within 100 to 130°C.
- · Cooling : The temperature difference between the capacitors and cleaning process shall not be greater than 100°C.




#### Caution


The ideal condition is to have solder mass(fillet)controlled to 1/2 to 1/3 of the thickness of a capacitor.


(2)Because excessive dwell times can adversely affect solderability, soldering duration shall be kept as close to recommended times as possible.

③Allowable number of reflow soldering : 2 times max.









### Caution

W Wave soldering must not be applied to capacitors designated as for reflow soldering only. W Allowable number of wave soldering : 1 times max.

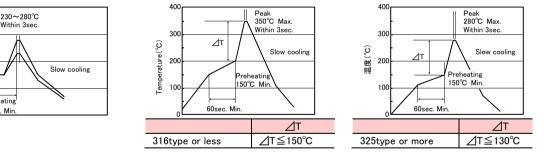
# [Hand soldering] [Recommended con

300

200

100

0


Preheating

60sec. Min

Temperature(°C)

[Recommended conditions for eutectic soldering]

[Recommended condition for Pb-free soldering]



#### Caution

①Use a 50W soldering iron with a maximum tip diameter of 1.0 mm.
②The soldering iron shall not directly touch capacitors.
③Allowable number of hand soldering : 1 times max.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). 1/2T~1/3T

Capacito

PC board

Solde



| 5. Cleaning                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Precautions                 | <ul> <li>Cleaning conditions</li> <li>1. When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use of the cleaning. (e.g. to remove soldering flux or other materials from the production process.)</li> <li>2. Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Technical<br>considerations | <ul> <li>1. The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance).</li> <li>2. Inappropriate cleaning conditions ( insufficient or excessive cleaning) may adversely affect the performance of the capacitors. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead to the cracking of capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked;</li> <li>Ultrasonic output : 20 W/l or less</li> <li>Ultrasonic frequency : 40 kHz or less</li> <li>Ultrasonic washing period : 5 min. or less</li> </ul> |  |  |

| 6. Resin coating a | and mold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precautions        | <ol> <li>With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance.</li> <li>When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive heat may lead to damage or destruction of capacitors.<br/>The use of such resins, molding materials etc. is not recommended.</li> </ol> |

| 7. Handling |                                                                                                                                                                                            |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | <ul> <li>Splitting of PCB</li> <li>1. When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board.</li> </ul> |
|             | 2. Board separation shall not be done manually, but by using the appropriate devices.                                                                                                      |
| Precautions | ◆Mechanical considerations                                                                                                                                                                 |
|             | Be careful not to subject capacitors to excessive mechanical shocks.                                                                                                                       |
|             | (1) If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used.                                                                                              |
|             | (2) Please be careful that the mounted components do not come in contact with or bump against other boards or components.                                                                  |

| Precautions              | <ul> <li>Storage</li> <li>1. To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible.</li> <li>Recommended conditions         <ul> <li>Ambient temperature : Below 30°C</li> <li>Humidity</li> <li>: Below 70% RH</li> <li>The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of capacitor is deteriorated as time passes, so capacitors shall be used within 6 months from the time of delivery.</li> <li>·Ceramic chip capacitors shall be kept where no chlorine or sulfur exists in the air.</li> </ul> </li> <li>The capacitance values of high dielectric constant capacitors will gradually decrease with the passage of time, so care shall be taken to design circuits . Even if capacitance value decreases as time passes, it will get back to the initial value by a heat treatment at 150°C for 1 hour.</li> </ul> |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Technical considerations | If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation ar quality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |

Please check the guide regarding precautions for deflection test, soldering by spot heat, and so on.



# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Taiyo Yuden manufacturer:

Other Similar products are found below :

D55342E07B523DR-T/R NCA1206X7R104K16TRPF NIN-FB391JTRF NIN-FC2R7JTRF NMC0402NPO220J50TRPF NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R153K16TRPF NMC0402X7R392K50TRPF NMC0603NPO1R8C50TRPF NMC0603NPO201J50TRPF NMC0603NPO330G50TRPF NMC0603X5R475M6.3TRPF NMC0805NPO220J100TRPF NMC0805NPO270J50TRPF NMC0805NPO681F50TRPF NMC0805NPO820J50TRPF NMC1206X7R102K50TRPF NMC1210Y5V105Z50TRPLPF NMC-L0402NPO7R0C50TRPF NMC-L0603NPO2R2B50TRPF NMC-P1206X7R102K50TRPF NMC1210Y5V105Z50TRPLPF NMC-L0402NPO7R0C50TRPF NMC-L0603NPO2R2B50TRPF NMC-P1206X7R103K1KVTRPLPF NMC-Q0402NPO8R2D200TRPF C1206C101J1GAC C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT KHC201E225M76N0T00 1812J2K00332KXT CCR06CG153FSV CDR14BP471CJUR CDR31BX103AKWR CDR33BX683AKUS CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H120J CGA2B2C0G1H151J CGA2B2C0G1H1R5C CGA2B2C0G1H050C CGA2B2C0G1H390J CGA2B2C0G1H391J CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2C0G1H820J