

Minima

Part No: FXUB68.07.0180C

ataoglas

Description:

Minima Embedded Flexible 4G LTE Wide Band Antenna 700-960MHz, 1700-2700MHz

Features:

Flexible Wideband Antenna
Covers worldwide 4G/3G/2G Band
Isotropic Radiation Pattern
Highest efficiency in smallest size
67.0x58.0x0.2 mm
I-PEX* I1.37 coaxial cable
CE Certified

1.	Introduction	3
2.	Specifications	4
3.	Antenna Characteristics	6
4.	Radiation Patterns	9
5.	Mechanical Drawing	19
6.	Packaging	20
7.	Application Note	21
	Changelog	23

Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Taoglas reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited.

1. Introduction

The patent pending Minima FXUB68 flexible antenna has been designed to cover 4G bands in the 700-2700MHz spectrum, but also optimally covers 3G and 2G. The antenna has a compact, flexible, modern design, with excellent efficiencies on all target bands.

The Minima comes standard with 180mm IPEX cable and connector for easy installation and can also be configured for different cable lengths and terminations. The 67x58x0.2mm FXUB68 is made from flexible polymer material, which is ultra-thin, compact and highly efficient across the 4G and 3G bands. It is installed by a simple "peel and stick" process, attaching securely to non-metal surfaces via adhesive backing.

The Minima has been designed with excess bandwidth so that performance is not affected by thicker or thinner plastic surfaces to which it is adhered. It enables designers to use only one antenna that covers all cellular communication frequencies in the IoT market.

The Minima antenna has a unique compact geometric design, which has excellent efficiency for its size and isotropic pattern at both low and high bands. This antenna if integrated optimally with enough clearance, can in most cases pass US operator requirements.

The antenna performs well at a reasonable distance, typically 20mm, from a ground and has demonstrated ease of integration into complex end user equipment.

The FXUB65 Minima antenna has a typical efficiency of more than 50% across the low bands and 64% across the high bands. The Minima is designed to be mounted directly onto a plastic or glass cover. It is an ideal choice for any device maker that desires ease of integration and needs to keep manufacturing costs down over the lifetime of a product.

Cable and connector can be customized, contact your regional Taoglas customer support team for more information.

2. Specifications

	5G/4G Bands				
Band Number	5GNR / FR1 / ITE	E / LTE-Advanced / WCDMA / HSPA / H	SDA+ / TD-SCDMA		
band Number	Uplink	Downlink	Covered		
1	UL: 1920 to 1980	DL: 2110 to 2170	✓		
2	UL: 1850 to 1910	DL: 1930 to 1990	✓		
3	UL: 1710 to 1785	DL: 1805 to 1880	✓		
4	UL: 1710 to 1755	DL: 2110 to 2155	✓		
5	UL: 824 to 849	DL: 869 to 894	✓		
7	UL: 2500 to 2570	DL:2620 to 2690	✓		
8	UL: 880 to 915	DL: 925 to 960	✓		
9	UL: 1749.9 to 1784.9	DL: 1844.9 to 1879.9	✓		
11	UL: 1427.9 to 1447.9	DL: 1475.9 to 1495.9	✓		
12	UL: 699 to 716	DL: 729 to 746	✓		
13	UL: 777 to 787	DL: 746 to 756	✓		
14	UL: 788 to 798	DL: 758 to 768	✓		
17	UL: 704 to 716	DL: 734 to 746	✓		
18	UL: 815 to 830	DL: 860 to 875	✓		
19	UL: 830 to 845	DL: 875 to 890	✓		
20	UL: 832 to 862	DL: 791 to 821	✓		
21	UL: 1447.9 to 1462.9	DL: 1495.9 to 1510.9	✓		
22	UL: 3410 to 3490	DL: 3510 to 3590	*		
23	UL:2000 to 2020	DL: 2180 to 2200	✓.		
24	UL:1625.5 to 1660.5	DL: 1525 to 1559	✓		
25	UL: 1850 to 1915	DL: 1930 to 1995	✓		
26	UL: 814 to 849	DL: 859 to 894	✓		
27	UL: 807 to 824	DL: 852 to 869	√		
28	UL: 703 to 748	DL: 758 to 803	✓		
29	UL: -	DL: 717 to 728	✓		
30	UL: 2305 to 2315	DL: 2350 to 2360	√		
31	UL: 452.5 to 457.5	DL: 462.5 to 467.5	*		
32	UL: -	DL: 1452 - 1496	√		
35		1850 to 1910	√		
38		2570 to 2620	✓		
39		1880 to 1920			
40		2300 to 2400	√		
41		2496 to 2690			
42		3400 to 3600	* *		
43		3600 to 3800	* *		
48	III · 1710 1790	3550 to 3700 DL: 2110-2200	~		
66 71	UL: 1710-1780	617 to 698	∀		
		617 to 698 1427 to 1518	∀		
74/75/76 78		3300 to 3800	*		
78 79		4400 to 5000	*		
79 85	698-716	728-746	~		
65	030-110	120-140	¥		

Electrical								
Frequency (MHz)	LTE 700 698~ 803	GSM 850 824~ 894	GSM 900 880~ 960	DCS 1710 ~1880	PCS 1850 ~1990	UMTS1 1920 ~2170	Wi-Fi 2400 ~2480	LTE 2600 2490 ~2690
Max Return Loss (dB)	-9	-8	-7	-9	-17	-13	-13	-12
Max VSWR	2.5	2.5	3	2.5	1.5	1.5	1.5	2
Efficiency (%)	45	45	45	60	65	65	65	55
Peak Gain (dBi)	2	2	2	2	2.5	2.5	3	2
Average Gain (dB)	-3.5	-3.5	-3.5	-2.2	-2	-2	-2	-2.6
Radiation Properties	Omni-directional Contract Cont							
Max Input Power (Watts)	5							
Polarization	Linear							
Impedance (Ohms)	50 Ohms							
			Mecha	nical				
Dimensions (mm)	67x58x0.2 mm							
Material	Flexible Polymer							
Connector	IPEX MHFI							
Cable	180mm 1.37							
Environmental								
Operation Temperature	re -40°C to 85°C							
Storage Temperature	-40°C to 85°C							
Relative Humidity	ımidity			40% to 95%				
RoHS Compliant	Yes							

3. Antenna Characteristics

3.1 Return Loss

3.2 Efficiency

3.3 Average Gain

3.4 Peak Gain

3.5 VSWR

4. Radiation Patterns

4.1 Test Set-Up

Chamber Set-Up VNA Set-Up

4.2

2D And 3D Radiation Patterns

700 MHz

850 MHz

950 MHz

1750 MHz

1850 MHz

2000 MHz

2150 MHz

2600 MHz

2750 MHz

5. Mechanical Drawing (Units: mm)

	Name	Material	Finish	QTY
1	FXUB68 FPC8	Polymer	Black	1
2	1.37 Cooxial Cable	FEP	Black	1
3	IPEX MHFHT	Brass	Gold	1
4	Double-Sided Adhesive	3M 467	Brown Liner	1

6. Packaging

100pcs FXUB68.07.0180C per PE Bag Bag Dimensions - 300 x 160mm Weight - 241g

1000pcs FXUB68.07.0180C per PE Large Bag Bag Dimensions - 380 x 280mm Weight - 2.6kg

5,000 pcs FXUB68.07.0180C per carton Carton - 320 x 250 x 230mm Weight - 13.5Kg

Pallet Dimensions 960 x 1000 x 1300mm 60 Cartons per Pallet 12 Cartons per layer 5 Layers

20

7. Application Note

Like all flex antennas, the FXUB65 Minima antenna performance is somewhat sensitive to the routing of the cable during integration. The preferred routing is a "full wrap" or "half wrap", as shown below where the cable is routed around the long side of the device. Routing over the lower part of the device as shown will also work well. An integration where the cable runs straight off will work, but the performance in the 900MHz band may not be optimal. Avoid running the cable up along the short side or wrapping it around the short side, as these will not work. If a longer cable is needed to wrap around the long side and still reach the module, this is ok, and a longer cable can be easily built. Keep the antenna at least 20mm away from conductors in the end user device.

The FXUB65 can be integrated into assemblies over a small ground plane such as a PCB. The efficiency in these cases can sometimes be higher than the antenna alone.

Changelog for the datasheet

SPE-16-8-023 - FXUB68.07.0180C

Revision: C (Current Version)		
Date:	15/02/21	
Changes:	Update to new datasheet template.	
Changes Made by:	Gary West	

Previous Revisions

Revision: B		
Date:	30/03/2017	
Changes:	Updated Spec with LTE table	
Changes Made by:	Andy Mahoney	
Revision: A (Original First Release)		
Date:	4/21/2016	

Revision: A (Original First Release)		
Date:	4/21/2016	
Notes:		
Author:	Jack Conroy	

www.taoglas.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Antennas category:

Click to view products by Taoglas manufacturer:

Other Similar products are found below:

GAN30084EU 930-033-R GW17.07.0250E 1513563-1 EXE902SM APAMPG-117 MAF94383 W3908B0100 W6102B0100 YE572113-30RSMM 108-00014-50 66089-2406 SPDA17RP918 A09-F8NF-M A09-F5NF-M RGFRA1903041A1T W3593B0100 W3921B0100 SIMNA-868 SIMNA-915 SIMNA-433 W1044 W1049B090 A75-001 WTL2449CQ1-FRSMM CPL9C EXB148BN 0600-00060 TRA9020S3PBN-001 Y4503 GD5W-28P-NF MA9-7N GD53-25 GD5W-21P-NF C37 MAF94051 MA9-5N EXD420PL B1322NR QWFTB120 MAF94271 MAF94300 GPSMB301 FG4403 AO-AGSM-OM54 5200232 MIKROE-2349 WCM.01.0111 MIKROE-2393 MIKROE-2352