

Specification

Part No.	:	MA9908.A.001
Product Name	:	GuardianX 1M 8in1 1*Active GNSS 4*LTE MIMO 3*WiFi MIMO
Features	:	Low-profile Housing with Wall Mount
		4* LTE MIMO 698 to 960MHz/1710 to 2170MHz/ 2490
		to 2690MHz/ 3300 to 3600MHz
		3* WIFI MIMO 2.4GHz/5.8 GHz
		1* GPS-GLONASS- Antenna
		Worldwide 4G Bands including 3G and 2G
		IP67 Waterproof Enclosure
		Dims: 360mm * 160mm * 16.5mm
		1M Low Loss TGC-200 and RG174 with SMA(M)/RP-
		SMA(M) connectors
		Custom Cables and Connectors Available
		RoHS Compliant

1.Introduction

The Taoglas GuardianX MA9908.A.001 is a low profile heavy duty, fully IP67 waterproof external antenna. Combining 8 elements into one antenna, 1 GPS/GLONASS/Galileo, 4* LTE MIMO (698 to 960MHz/1710 to 2170MHz/ 2490 to 2690MHz/ 3300 to 3600MHz) and 3* Dual-band Wi-Fi MIMO 2.4-5.8GHz. This unique product delivers powerful worldwide 4G LTE MIMO antenna technology at 700MHz/800MHz/1700MHz/1800MHz/2600MHz and dual band Wi-Fi.

Typical applications include:

- Passenger Bus / Rail / Air Applications.
- Automotive and Heavy Equipment Vehicle Tracking and Telematics
- Remote Asset and Pipeline Monitoring
- HD Video over LTE
- First Responder and Emergency Services
- M2M Applications/IoT

LTE 4G applications demand high speed data uplink and downlink. High efficiency and high gain MIMO antennas are necessary to achieve the required signal to noise ratio and throughput required to solve these challenges. Taoglas also takes care to have high isolation between the two MIMO antennas to prevent self-interference. Low loss cables are used to keep efficiency high over long cable lengths. In contrast, smaller MIMO antennas with poorer quality thinner cables will have much reduced efficiency and isolation, which would lead to a large drop in system throughput, increased number of drops, and may indeed not make a system connection at all.

Cable length and connector types are customizable. Contact your regional Taoglas sales office for support.

2. Specification

2.4GHz/5.8GHz MIMO Antenna					
Frequency (MHz)		2400~2500	5150~5850		
Efficiency (%)					
MIMO_1	1M	71.50	59.78		
MIMO_2	1M	79.81	59.22		
MIMO_3	1M	79.96	59.13		
Average Gain (dBi)					
MIMO_1	1M	-1.46	-2.23		
MIMO_2	1M	-0.98	-2.28		
MIMO_3	1M	-0.97	-2.28		
Peak Gain (dBi)					
MIMO_1	1M	4.08	3.47		
MIMO_2	1M	4.53	4.47		
MIMO_3 1M		4.89	5.71		

2G/3G/4G MIMO Antenna								
Frequency (MHz)		LTE700	GSM850	GSM900	DCS	PCS	UMTS1	LTE2600
Frequency (M	Frequency (MHZ)		824~894	880~960	1710~1880	1850~1990	1920~2170	2490~2690
			Effic	iency (%))			
MIMO_1	1M	57.15	49.97	40.80	61.56	60.82	57.58	52.02
MIMO_2	1M	58.48	54.30	46.08	66.07	66.98	64.51	56.55
MIMO_3	1M	52.24	60.09	53.84	65.28	67.19	67.71	71.62
MIMO_4	1M	52.24	60.09	53.84	65.28	67.19	67.71	71.62
Average Gain (dBi)								
MIMO_1	1M	-2.43	-3.01	-3.89	-2.11	-2.16	-2.40	-2.84
MIMO_2	1M	-2.33	-2.65	-3.36	-1.80	-1.74	-1.90	-2.48
MIMO_3	1M	-2.82	-2.21	-2.69	-1.85	-1.73	-1.69	-1.45
MIMO_4	1M	-2.82	-2.21	-2.69	-1.85	-1.73	-1.69	-1.45
Peak Gain (dBi)								
MIMO_1	1M	1.41	1.53	1.04	3.17	3.54	3.91	4.23
MIMO_2	1M	1.29	1.90	1.67	4.07	4.07	4.15	5.10
MIMO_3	1M	2.17	2.51	2.44	3.32	3.32	3.59	5.63
MIMO_4	1M	2.17	2.51	2.44	3.32	3.32	3.59	5.63
Impedance				5	50 Ω			
Polarization				Li	near			

CERAMIC PATCH					
Frequency		1574~1610MHz			
Coin @ Zonith	1575.42MHz 1.5 dBic Typ. @ Zenith				
Gain @ Zenith	1602MHz +0 dBic Typ. @ Zenith				
Gain at 90° with LNA	1575.42MHz: 31 ± 3dBic				
	1602MHz: 30 ± 3dBic				
Polarization	RHCP				
Avial Datia	6.0dB max. @ 1575.42MHz Zenith				
AXIdI Kduu	14.0dB max. @ 1602MHz Zenith				
Patch Dimension	25.1*25.1*4mm				
LNA					
Frequency	1574~1610MHz				
Outer Band	1502+140MHz 154P min				
Attenuation	1592±140MHZ 150B MIN.				
Output Impedance	50Ω				
Output VSWR	2.0 Max				
Pout at 1dB Gain	Typ2dBm				
Compression point	Min6dBm				
Input Voltage	Min:1.8V Typ. 3.0V Max:5V				
LNA Gain, Power Consumption and Noise Figure					
Input Voltage	Min:1.8V	Typ. 3.0V	Max: 5.5V		
Total Gain @ Zenith	25dBic	31dBic	34dBic		
Current Consumption	5mA	10mA	23mA		
Noise Figure	3dB	3dB	3.3dB		
Cable	3m F	RG174 standard, fully cus	stomizable		
Connector	SMA(M) standard, standard, fully customizable				

MECHANICAL				
Dimensions	360mm * 160mm * 16.5mm			
Cable	1M TGC200 for LTE/WIFI – Fully Customizable			
	1M RG174 for GNSS – Fully Customizable			
	LTE_SMA-Plug – Fully Customizable			
Connector	WIFI_RP-SMA-Plug – Fully Customizable			
	GNSS_SMA-Plug – Fully Customizable			
Casing	UV Resistant PC			
Sealant	Rubber Stopper			
Weight	1250g			
ENVIRONMENTAL				
Protection	IP67			
Temperature Range	-40°C to +85°C			
Thermal Shock	100 cycles -40°C to +85°C			
Humidity	Non-condensing 65°C 95% RH			

3.Antenna Characteristics

3.1 Block Diagram (Active antenna)

3.1.1 Return Loss

3.1.2 Out Band Rejection @3V

3.1.3 LNA Noise Figure and Gain @3V

3.1.4 Efficiency

3.1.5 Average Gain

3.1.6 Peak Gain

3.1.7 Axial Ratio

3.1.8 2D Radiation Patterns

Х 0 10 330 30 0 10 60 300 20 30 90 Y 270 -40 1575.42MHz 240 120 1602MHz 150 210 (dBi) 180

ZX Plane

XY Plane

ZY Plane

3.1.9 3D Radiation Patterns

1575.42MHz

1602MHz

3.2 LTE & WIFI Antenna

3.2.1 Return loss

3.2.2 Isolation

3.2.3 Efficiency

3.2.4 Average Gain

LTE MIMO 1, 2, 3 and 4

3.2.4.1 Peak Gain

WIFI

4. Antenna Radiation Patterns

4.1 Antenna Setup (Antenna Test Setup in Anechoic Chamber)

4.2 2D Radiation Patterns

4.2.1 LTE_MIMO1

XY Plane

Ζ -20 **X** 704MHz 751MHz 824MHz 960M Hz (dBi)

XZ Plane

YZ Plane

4.2.2 LTE_MIMO2

XY Plane

Ζ Χ 704MHz 751MHz 824MHz 960M Hz (dBi)

XZ Plane

YZ Plane

Ζ

4.2.3 LTE_MIMO3

XZ Plane

YZ Plane

4.2.4 LTE_MIMO4

XY Plane

XZ Plane

YZ Plane

4.2.5 WIFI_MIMO1

XY Plane

Ζ 0 10 330 30 0 -10 300 60 -20 -30 90 **X** 40 270 2400MHz 240 120 2450MHz -2500MHz 210 150 180 (dBi)

XZ Plane

YZ Plane

4.2.6 WIFI_MIMO2

XY Plane

XZ Plane

YZ Plane

Ζ

4.2.7 WIFI_MIMO3

XY Plane

Ζ 0 10 330 30 10 300 60 -20 -30 90 **X** 40 270 2400MHz 240 120 2450MHz -2500MHz 210 150 180 (dBi)

XZ Plane

YZ Plane

4.3 3D Radiation Patterns

4.3.1 LTE_MIMO1

4.3.2 LTE_MIMO2

4.3.3 LTE_MIMO3

4.3.4 LTE_MIMO4

4.3.5 WIFI_MIMO1

4.3.6 WIFI_MIMO2

4.3.7 WIFI_MIMO3

5. Drawing

6. Packaging

1pc MA9908.A.001 per PE Bag Bag Dimensions - 364*524mm Weight - 1.150Kg

10pcs MA9908.A.001 per Carton Carton Dimensions - 430*380*280mm

Weight - 12Kg

The second secon

Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Taoglas reserves all rights to this document and the information contained herein.

Reproduction, use or disclosure to third parties without express permission is strictly prohibited.

Copyright © Taoglas Ltd.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Antennas category:

Click to view products by Taoglas manufacturer:

Other Similar products are found below :

 GAN30084EU
 930-033-R
 GW17.07.0250E
 1513563-1
 EXE902SM
 APAMPG-117
 MAF94383
 W3908B0100
 W6102B0100
 YE572113

 30RSMM
 108-00014-50
 66089-2406
 SPDA17RP918
 A09-F8NF-M
 A09-F5NF-M
 RGFRA1903041A1T
 W3593B0100
 W3921B0100

 SIMNA-868
 SIMNA-915
 SIMNA-433
 W1044
 W1049B090
 A75-001
 WTL2449CQ1-FRSMM
 CPL9C
 EXB148BN
 0600-00060

 TRA9020S3PBN-001
 Y4503
 GD5W-28P-NF
 MA9-7N
 GD53-25
 GD5W-21P-NF
 C37
 MAF94051
 MA9-5N
 EXD420PL
 B1322NR

 QWFTB120
 MAF94271
 MAF94300
 GPSMB301
 FG4403
 A0-AGSM-OM54
 5200232
 MIKROE-2349
 WCM.01.0111
 MIKROE-2393

 MIKROE-2352
 MIKROE-2352
 MIKROE-2352
 MIKROE-2352
 MIKROE-2352
 MIKROE-2352
 MIKROE-2352