

Specification

Part No. : **PC29.07.0100A**

Product Name : **TheStripe™** Penta-Band

GSM 850 / 900 / 1800 / 1900 & UMTS / WCDMA (3G)

2100 MHz

80mm*30mm PCB Antenna

Feature : 100mm long, 1.13 mm diameter

Miniature Co-axial Cable IPEX MHF I (U.FL) connector

Average Efficiency 62%

Tested in Free space

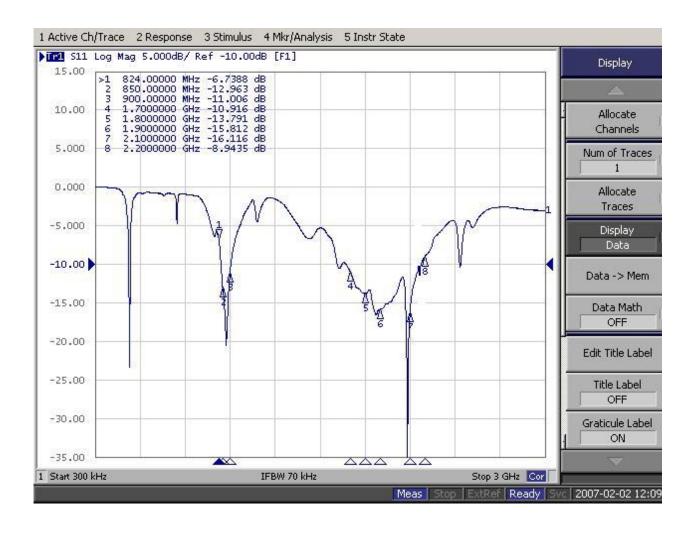
Dims: 80*30mm

RoHS Compliant

1. Introduction

This high performance, low profile, PCB antenna is based on smart **TheStripe™** antenna technology. It consists of a PCB antenna and mini coaxial cable. The product is a high gain Penta-band 850/900/1800/1900/2100 antenna suitable for worldwide GSM, UMTS and WCDMA applications. Its high efficiency (62% average) makes it an ideal choice to pass telecom operator's testing approvals. The product should be tested in free space conditions connected to the client's cellular device.

Further optimization can be done upon receipt of the client's device at a local Taoglas facility.


2. Specifications

	CELLULAR					
Communication system	AMPS	GSM	DCS	PCS	UMTS/WCDMA	
Frequency Band	850MHz	900MHz	1800MHz	1900MHz	2100MHz	
VSWR	1.58	1.78	1.51	1.38	1.37	
Return Loss	-12.96	-11.00	-13.79	-15.81	-16.11	
Efficiency	56.84%	72.98%	63.52%	55.79%	63.25%	
Peak Gain	0.01dBi	1.2dBi	2.66dBi	1.25dBi	1.43dBi	
Average Gain	-2.45dB	-1.37dB	-1.97dB	-2.53dB	-1.99dB	
Impedance	50 Ohm					
Radiation Pattern	Omnidirectional					
Polarization	Horizontal					
MECHANCIAL						
Dimensions	80 * 30mm					
RF Cable RF Coaxial Cable $\psi 1.13 \pm 0.1$ mm					100 mm	
Kr Cable	Gray Color					
RF Connector	IPEX MHF I (U.FL)					
ENVIRONMENTAL						
Operation Temperature	-40°C to + 85°C					
Storage Temperature	-40°C to + 95°C					
Relative Humidity	40% to 95%					

3. Antenna Characteristics

3.1. Return loss

4. Reliability

Test Items	Procedure	Requirement
Thermal Shock	Starting at -40 for 30minutes and then cycled to +85 to remain 30minutes (a complete cycle). To repeat 5 complete cycles. (Refer to IEC 68-2-14 Method Na)	 The value of return loss must be within product specifications after this test. No physical deformation should be evident.
Storage Temperature (Cold)	Samples must be put into -30°C chamber for 72 hours and samples shall be powered during test. (Refer to IEC 68-2-1 Method Aa)	 The value of return loss must be within product specifications after this test. No physical deformation should be evident.
Storage Temperature (Dry Heat)	Samples must be put into +75°C chamber for 72 hours and samples shall be powered during test. (Refer to IEC 68-2-1 Method Ba)	 The value of return loss must be within product specifications after this test. No physical deformation should be evident.
Operating Temperature (Cold)	Samples must be put into -20°C chamber for 2 hours and samples shall be powered during test. (Refer to IEC 68-2-1 Method Aa)	 The value of return loss must met specification during test/after test No mechanical defects after test.
Operating Temperature (Dry Heat)	Samples must be put into +65°C chamber for 72 hours and samples shall be powered during test. (Refer to IEC 68-2-1 Method Ba)	 The value of return loss must met specification during test/after test No mechanical defects after test.

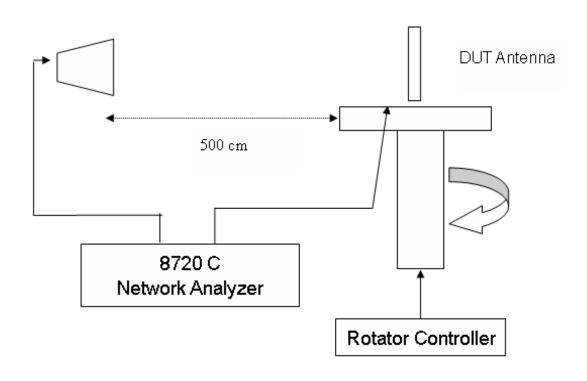
5. Antenna Test Procedures and Setup

5.1. Test Procedure for VSWR/Return Loss

STEP 1 Route Cable in Correct Position

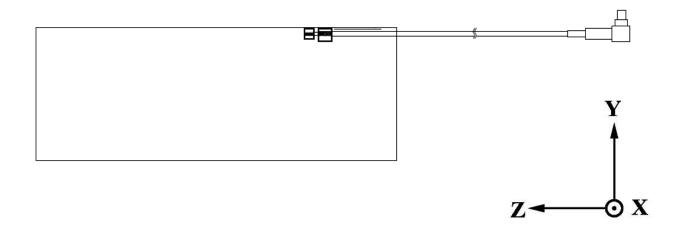
STEP 2 Connect Antenna to Module

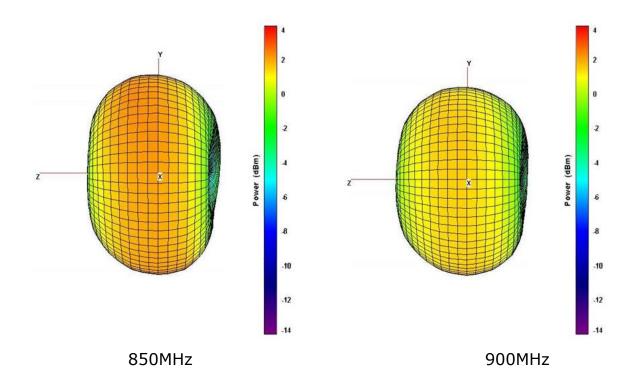
Connect feed-line to network analyze

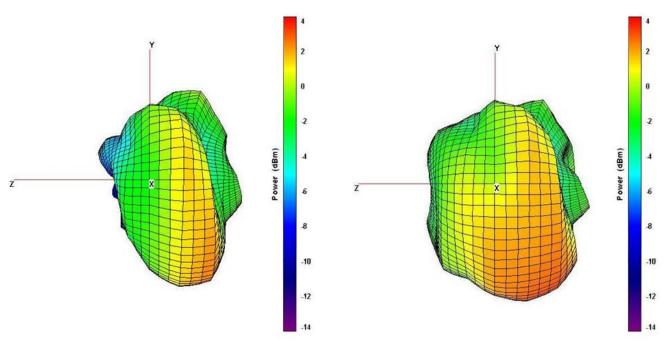

STEP 3 - Assemble Antenna in Correct Position

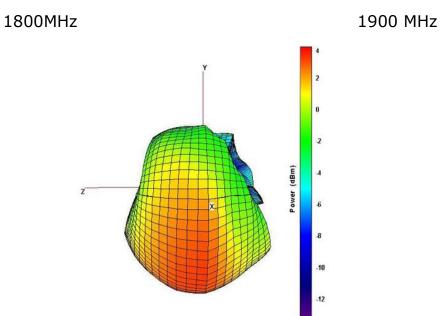
STEP 4 - Assemble Housing

5.2. 3D Radiation Pattern Testing


Test Setup Diagram

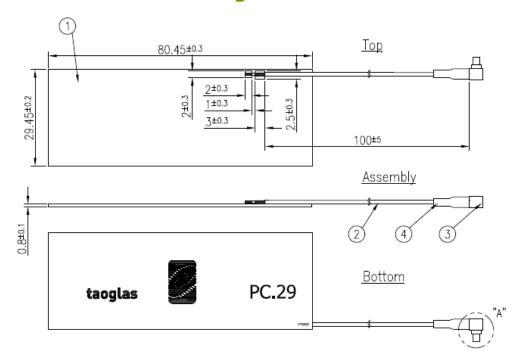

Radiation Pattern Testing - Anechoic Chamber

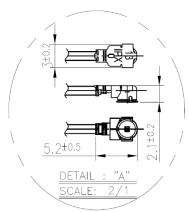

5.3. 3D Radiation Pattern Testing



SPE-11-8-066/B Page 6 of 11

2100MHz


5.4. 3D Chamber Testing – Tabular Results


Channel	850	900	1800	1900	2100
Note					
Ant. Port Input Pwr. (dBm)	0	0	0	0	0
Tot. Rad. Pwr. (dBm)	-2.45333	-1.36794	-1.97033	-2.53429	-1.98915
Peak EIRP (dBm)	0.015689	1.20176	2.66193	1.24876	1.43211
Directivity (dBi)	2.46902	2.5697	4.63226	3.78305	3.42126
Efficiency (dB)	-2.45333	-1.36794	-1.97033	-2.53429	-1.98915
Efficiency (%)	56.8417	72.9803	63.5283	55.7919	63.2536
Gain (dBi)	0.015689	1.20176	2.66193	1.24876	1.43211
NHPRP ±Pi/4 (dBm)	-3.02704	-1.92238	-2.97144	-3.45498	-2.82882
NHPRP ±Pi/6 (dBm)	-4.06616	-2.96253	-4.30533	-4.76442	-4.0912
NHPRP ±Pi/8 (dBm)	-5.02906	-3.92452	-5.46289	-5.86661	-5.13854
Upper Hem. PRP (dBm)	-5.26654	-4.1779	-8.15472	-6.78538	-4.25527
Lower Hem. PRP (dBm)	-5.67008	-4.58827	-3.16646	-4.58066	-5.89806
NHPRP4 / TRP Ratio (dB)	-0.57372	-0.55444	-1.00111	-0.92069	-0.83967
NHPRP4 / TRP Ratio (%)	87.6251	88.0149	79.4126	80.8967	82.4201
NHPRP6 / TRP Ratio (dB)	-1.61284	-1.59459	-2.335	-2.23013	-2.10205
NHPRP6 / TRP Ratio (%)	68.9789	69,2693	58.4117	59.8394	61.6304
NHPRP8 / TRP Ratio (dB)	-2.57573	-2.55658	-3.49256	-3.33232	-3.14939
NHPRP8 / TRP Ratio (%)	55.2621	55.5062	44.7449	46.4268	48.424
UHPRP / TRP Ratio (dB)	-2.81321	-2.80996	-6.18439	-4.25109	-2.26612
UHPRP / TRP Ratio (%)	52.3213	52.3605	24.0747	37.5743	59.3455
LHPRP / TRP Ratio (dB)	-3.21676	-3.22033	-1.19613	-2.04636	-3.90891
LHPRP / TRP Ratio (%)	47.6787	47.6395	75.9253	62.4257	40.6545
Front/Back Ratio (dB)	0.845463	1.05517	9.54643	6.84502	5.08847
Phi BW (°)	360	360	178	201	222
+ Phi BW (°)	360	360	88	125	65
- Phi BW (°)	0	0	90	76	157
Theta BW (°)	81	80	46	66	105
+ Th. BW (°)	38	38	19	41	46
- Th. BW (°)	43	42	27	25	59
Boresight Phi (°)	255	255	300	240	315
Boresight Th. (°)	90	90	120	105	90
Maximum Power (dBm)	0.015689	1.20176	2.66193	1.24876	1.43211
Minimum Power (dBm)	-19.5093	-20.8812	-13.7782	-14.9471	-13.4615
Average Power (dBm)	-3.93427	-2.8818	-2.73192	-3.54007	-3.05829
Max/Min Ratio (dB)	19.525	22.083	16.4401	16.1959	14.8936
Max/Avg Ratio (dB)	3.94996	4.08357	5.39385	4.78883	4.4904
Min/Avg Ratio (dB)	-15.575	-17.9994	-11.0462	-11.4071	-10.4032
Average Gain (dB)	-2.45333	-1.36794	-1.97033	-2.53429	-1.98915
E-Plane BW (°)	360	360	168	194	214
+ E-Plane BW (°)	360	360	98	125	158
- E-Plane BW (°)	0	0	70	69	56
H-Plane BW (°)	81	80	48	72	104
+ H-Plane BW (°)	42	41	27	26	48
- H-Plane BW (°)	39	39	21	46	56

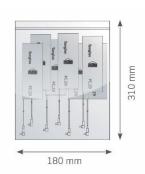
6. Mechanical Drawings (Unit: mm)

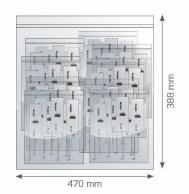
6.1. Dimensions and Drawing

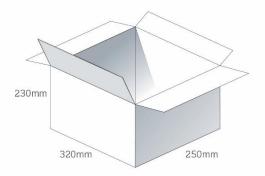
	Name	P/N	Material	Finish	QTY
1	PC29 PCB	100211C050005A	Composite 0.8t	Black	1
2	1.13 Coaxial Cable	300215C020000A	FEP	Black	1
3	IPEX MHF1	204111G000013A	Brass	Au Plated	1

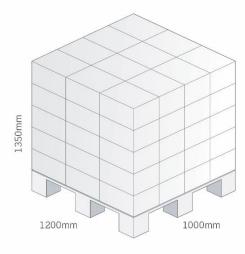
6.2. Antenna Placement

Antenna designed to for testing when connected outside the client's device and placed in frees pace conditions, for example on plastic foam block. Final product can use preapplied double sided adhesive tape, slot or screw mount.


7. Packaging (Unit: mm)


100pcs PC29.09.0100A per PE Bag Bag Dimensions - 180 x 310mm Weight - 530g


1000pcs PC29.09.0100A per PE Large Bag Bag Dimensions - 470 x 388mm Weight - 5.3kg


2500 pcs PC29.09.0100A per carton Carton - 320 x 250 x 230mm Weight - 13.75Kg

Pallet Dimensions 1200x 1000 x 1350mm 60 Cartons per Pallet 12 Cartons per layer 5 Layers

Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.

Taoglas reserves the rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited.

Copyright © Taoglas Ltd.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Antennas category:

Click to view products by Taoglas manufacturer:

Other Similar products are found below:

GAN30084EU 930-033-R GW17.07.0250E 1513563-1 EXE902SM APAMPG-117 MAF94383 W3908B0100 W6102B0100 YE572113-30RSMM 108-00014-50 66089-2406 SPDA17RP918 A09-F8NF-M A09-F5NF-M RGFRA1903041A1T W3593B0100 W3921B0100 SIMNA-868 SIMNA-915 SIMNA-433 W1044 W1049B090 A75-001 WTL2449CQ1-FRSMM CPL9C EXB148BN 0600-00060 TRA9020S3PBN-001 GD5W-28P-NF MA9-7N GD53-25 GD5W-21P-NF C37 MAF94051 MA9-5N EXD420PL B1322NR QWFTB120 MAF94271 MAF94300 GPSMB301 FG4403 AO-AGSM-OM54 5200232 MIKROE-2349 WCM.01.0111 MIKROE-2393 MIKROE-2352 MIKROE-2350