

Revision: A2 Control No .:

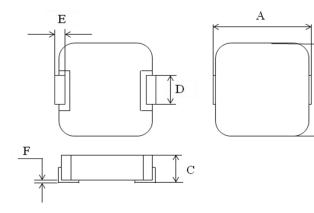
	Revision Record					
Control No.	Revision	Description	Date	Drawn	Approved	
	A0	Initial release TMAX-0650-100-M TMAX-0650-470-M	2018/05/15	Heter	Roger	
	A1	Add TMAX-0650-150-M TMAX-0650-180-M TMAX-0650-220-M TMAX-0650-330-M	2018/09/20	Heter	Roger	
	A2	Add TMAX-0650-5R5-M TMAX-0650-6R8-M	2019/03/29	Heter	Roger	

Revision: A2 Control No.:

TMAX-0650-XXX-M Molded Power Inductor

Features

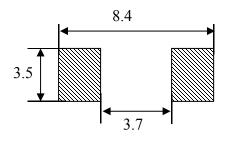
- Low profile •
- Low core loss and low DCR •
- High rated current
- High performance (Isat) realized by metal dust core
- RoHS compliant and Halogen Free
- Low EMI and low noise


Applications

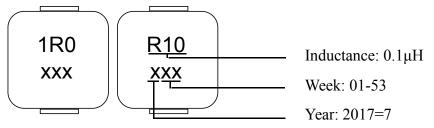
- Voltage Regulator Module
- DC/DC converters
- Thin type on-board power supply module for exchanger •
- Graphics cards
- Laptops and PCs
- SSD modules

Product Description

Dimensions in millimeters


Α	7.4 Max
В	6.6±0.2
С	5.0 Max.
D	3.0±0.3
E	1.6±0.5
F	0~0.15

В


Revision: A2 Control No .:

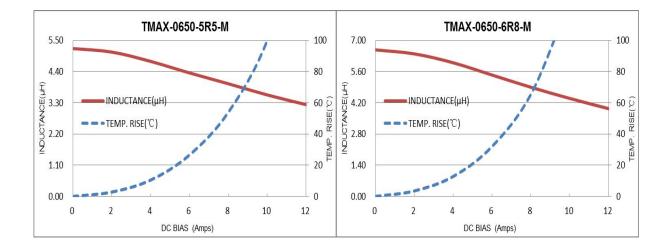
Recommend Land Pattern Dimensions in millimeters

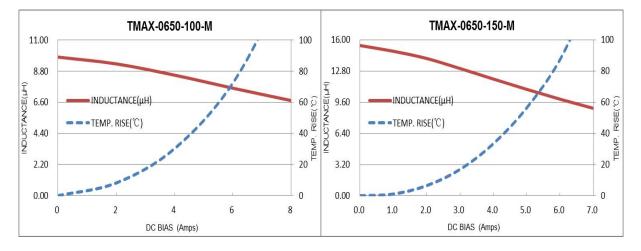
Marking

- The inductor is marked with a 6-digit code by ink. •
- For example: $1R0 \rightarrow 1.0\mu H$, $R10 \rightarrow 0.1\mu H$. ۲

Specifications

Part No.	Indu	ictance	DCR	(mΩ)	Saturation Current Isat (Amps.)	Heat Rating Current Idc (Amps.)
	L₀(µH)	Tolerance	Тур.	Max.	Тур.	Тур.
TMAX-0650-5R5-M	5.5	±20%	27	33	9.5	6.3
TMAX-0650-6R8-M	6.8	±20%	31	37	8.0	6.0
TMAX-0650-100-M	10	±20%	53	65	6.5	4.0
TMAX-0650-150-M	15	±20%	76	85	5.0	3.8
TMAX-0650-180-M	18	±20%	90	100	4.5	3.5
TMAX-0650-220-M	22	±20%	116	130	4.0	3.0
TMAX-0650-330-M	33	±20%	170	185	3.0	2.7
TMAX-0650-470-M	47	±20%	295	330	2.5	2.0

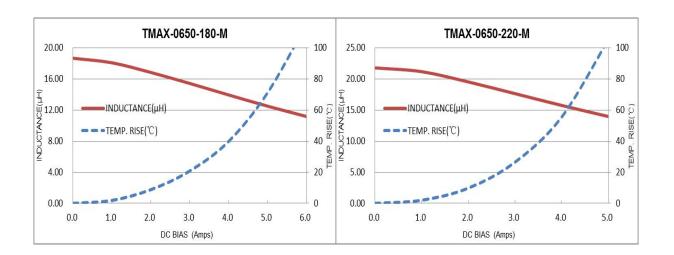


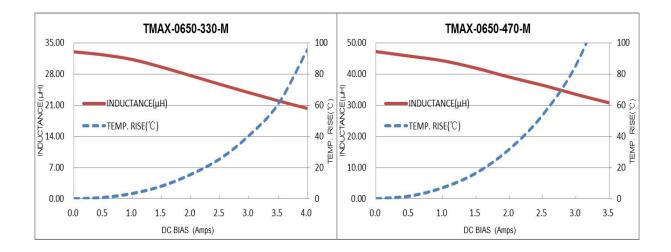

Revision: A2 Control No.:

Notes:

- 1. All test data is referenced to 23±3 °C and 45%RH to 70%RH ambient.
- 2. Test Instruments: 3260B LCR Meter, 3265B Bias Current Source (100kHz,1V), EUCOL-U2516B DC Low ohm meter.
- 3. Operating temperature range 55 °C to + 125 °C (ambient + self-temp. rise) .
- 4. Isat: DC current (A) that will cause L_0 to drop approximately 30 %.
- 5. Idc: DC current (A) that will cause an approximate ΔT of 40 °C.
- 6. The part temperature (ambient + temp. rise) should not exceed 125 °C under worst case operating conditions. Circuit design, component placement, PWB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.
- 7. The rated current as listed is either the saturation current or the heat rating current depending on which value is lower.

Inductance and Temperature Rise vs. DC Current





^{4 / 12} http://www.tdgcore.com

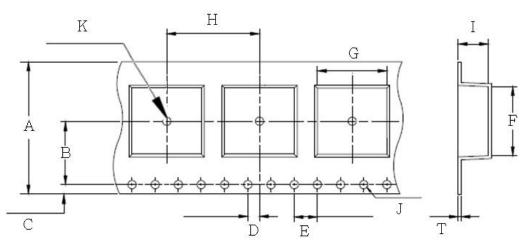
Revision: A2 Control No.:

Revision: A2 Control No .:

Reliability:

Item	Test Method	Specification and Requirement
Solderability	Solder heat proof : 1.Preheating: 160 ± 10°C for 90 seconds 2.Retention time: 245 ± 5 ℃ for 2 ± 0.5 seconds	The surface of terminal immersed shall be minimum of 95% covered with a new coating of solder.
Vibration	 1.Vibration frequency: (10Hz to 55Hz to10Hz) in 60 seconds as a period 2.Vibration time: period cycled for 2 hours in each of 3 mutual perpendicular directions 3.Amplitude: 1.5mm max. 	$\Delta L/L_0 \le \pm 5\%$ No mechanical damage such as
Shock	1.Peak value: 100 G2.Duration of pulse: 11ms3.3 times in each positive and negative direction of 3 mutual perpendicular directions	break.

Reliability:

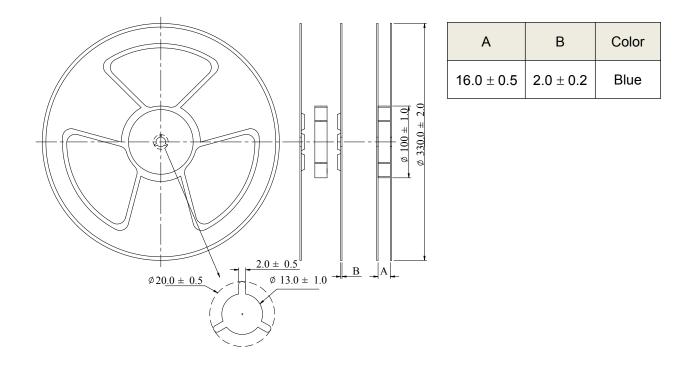

ltem	Test Method	Specification and Requirement
Thermal Shock	1.Repeat 100 cycle as follow: $(-55 \pm 2^{\circ}C, 30 \pm 3minutes) \rightarrow (Room$ temperature, 5 minutes) $\rightarrow (+125 \pm 2^{\circ}C, 30 \pm 3minutes) \rightarrow$ (Room temperature, 5 minutes) 2.Recovery: 48 + 4 / - 0 hours of recovery under the standard condition after the test	$\Delta L/L_0 \le \pm 5\%$ No distinct damage in appearance.

Revision: A2 Control No.:

High Temperature Resistance	1.Environment Temperature : 85 ± 2°C 2.Applied Current: Rated current 3.Duration : 1,000 + 4 / - 0 hours	
Humidity Resistance	1.Environment Temperature: 60 ± 2°C 2.Relative Humidity: 90~95% 3.Duration: 1,000 + 4 / - 0 hours	
Low Temperature Store	1.Store temperature: -55 \pm 2°C for total 1,000 + 4 / - 0 hours	
High Temperature Store	1.Store temperature: +125 \pm 2°C for total 1,000 + 4 / - 0 hours	

Packaging Dimensions in millimeters

G	F	I	Т	Н	А
$\textbf{7.2}\pm\textbf{0.1}$	7.5± 0.1	5.6 ± 0.1	0.35 ± 0.05	12.0 ± 0.1	16.0 ± 0.3

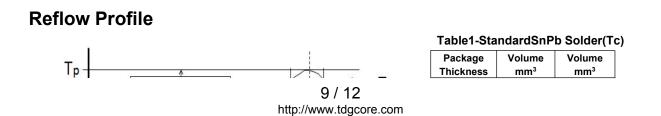

7 / 12 http://www.tdgcore.com

Revision: A2 Control No.:

J	К	D	E	В	С
$\phi 1.50{\pm}~0.1$	φ1.50± 0.1	$\textbf{2.0}\pm\textbf{0.1}$	4.0 ± 0.1	$\textbf{7.5}\pm\textbf{0.1}$	1.75±0.1

Reel Dimensions in millimeters




Peeling of top cover tape

- The peeling speed shall be about 300 mm/minute.
- The peeling force shall be between 0.1 to 0.7 N.

Revision: A2 Control No.:

Revision: A2 Control No .:

	<350	≧350
<2.5mm	235 ℃	220 ℃
≧2.5mm	220 ℃	220 ℃

Table2-Lead(Pb)Free Solder(Tc)

Package Thickness	Volume mm³ <350	Volume mm ³ 350-2000	Volume mm³ >2000
<1.6mm	260 ℃	260 ℃	260 ℃
1.6-2.5mm	260 ℃	250 ℃	245 ℃
>2.5mm	250 ℃	245 ℃	245 ℃

Reference JDEC J-STD-020(latest revision)

Profile Feature		Standard SnPb solder	Lead(Pb) Free Solder
	•Temperature min.(Tsmin)	100 ℃	150 ℃
Preheat and Soak	•Temperature max.(Tsmax)	150 ℃	200 °C
	•Time(ts):Tsmin to Tsmax	60-120 Seconds	60-120 Seconds
Average ramp up rate TL to Tp		3℃/Second Max.	3℃/Second Max.
Liquidous temperature(TL)		183℃	183 ℃
Time at liquidous (tL)		60-150 Seconds	60-150 Seconds
Peak package body temperature(Tp)*		Table 1	Table 2
Time (tp)**within 5 $^{\circ}$ C of the specified classification temperature(Tc)		20seconds**	30seconds**
Average ramp-down rate Tp to TL		6℃/Second Max.	6℃/Second Max.
Time 25°C to Peak Temperature		6 Minutes Max.	8 Minutes Max.

*Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

Numbers of taping

• 800 pieces/reel

A2 Revision: Control No.:

Label marking

- The following items shall be marked on the production and shipping
- Label on the reel

Production Label

- ✓ Part No.
- ✓ Description
- ✓ Quantity
- ✓ Produce No.
- ✓ Taping No.

Shipping Label

- ✓ Customer's Name
- ✓ Customer's Part No.
- ✓ Manufacturer's Part No.
- ✓ Manufacturer's Name
- Manufacturer's Country

Care note for use

Storage Condition: Temperature 25 to 35°C, Humidity 45 to 75% RH

Use Temperature:

- ✓ Minimum Temperature: -55°C Ambient temperature of molded power inductor.
- ✓ Maximum Temperature: +125°C The value of temperature including ambient of the transformer and temperature rise of molded power inductor.
- ✓ There is not a problem from -55°C ~ +125°C in a reliability test.
- However, this is not meant a temperature grade guarantee of UL.

 \geq Model: When this molded power inductor was used in a similar or new product to the original one, sometimes it might be unable to satisfy the specifications due to difference of condition of usage.

Drop: If the molded power inductor suffered mechanical stress such as drop, \geq characteristics may become poor (due to damage on coil bobbin, etc.). Never use such stressed molded power inductor.

Care note for Safety

Provision to Abnormal Condition

11/12http://www.tdgcore.com

Revision: A2 Control No.:

This molded power inductor itself does not have any protective function in abnormal condition such as overload, short-circuit and open-circuit conditions, etc. Therefore, it shall be confirmed as the end product that there is no risk of smoking, fire, dielectric withstand voltage, insulation resistance, etc. in abnormal conditions to provide protective devices and/or protection circuit in the end product.

Temperature Rise

Temperature rise of molded power inductor depends on the installation condition on end products. It shall be confirmed on the actual end product that temperature rise of molded power inductor is in the limit of specified temperature class.

Dielectric Strength

Dielectric withstanding test with higher voltage than specific value will damage insulating material and shorten its life.

> Water

This molded power inductor must not be used in wet condition by water, coffee or any liquid because insulation strength becomes very low on the condition.

Potting

If this molded power inductor is potted in some compound, coating material of magnet wire might be occasionally damaged. Please ask us if you intend to pot this molding.

> Detergent

Please consult our company once in case of this because the confirmation of reliability etc. is needed when the washing medicine is used for the molded power inductor.

Notes

This electronic component has been designed and developed for usage in general electronic equipment only, not for usage in areas such as military, aerospace, aviation, transportation (automotive control, train control, ship control) etc.. TDG Holding Co., Ltd. must be informed about the intent of such usage before the design-in stage and the parties must have executed an agreement specifically governing such use. In addition, sufficient reliability evaluation checks for safety must be performed on every electronic component.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Fixed Inductors category:

Click to view products by TDG manufacturer:

Other Similar products are found below :

MLZ1608M6R8WTD25 MLZ1608N6R8LT000 MLZ1608N3R3LTD25 MLZ1608N3R3LT000 MLZ1608N150LT000 MLZ1608M150WTD25 MLZ1608M3R3WTD25 MLZ1608M3R3WT000 MLZ1608M150WT000 MLZ1608A1R5WT000 MLZ1608N1R5LT000 B82432C1333K000 PCMB053T-1R0MS PCMB053T-1R5MS PCMB104T-1R5MS CR32NP-100KC CR32NP-151KC CR32NP-180KC CR32NP-181KC CR32NP-1R5MC CR32NP-390KC CR32NP-3R9MC CR32NP-680KC CR32NP-820KC CR32NP-8R2MC CR43NP-390KC CR43NP-560KC CR43NP-680KC CR54NP-181KC CR54NP-470LC CR54NP-820KC CR54NP-8R5MC MGDQ4-00004-P MGDU1-00016-P MHL1ECTTP18NJ MHL1JCTTD12NJ PE-51506NL PE-53601NL PE-53630NL PE-53824SNLT PE-62892NL PE-92100NL PG0434.801NLT PG0936.113NLT PM06-2N7 PM06-39NJ HC2LP-R47-R HC2-R47-R HC3-2R2-R HC8-1R2-R