

RF360 Europe GmbH
A Qualcomm – TDK Joint Venture

SAW components

SAW filter
TD-LTE band 41

Series/type: B8351

Ordering code: B39262B8351L210

Date: February 15, 2017

Version: 2.2

RF360 products mentioned within this document are offerred by RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

RF360 Holdings Singapore Pte. Ltd. is a joint venture of Qualcomm Global Trading Pte. Ltd. and EPCOS AG.

RF360 Europe GmbH, Anzinger Str. 13, München, Germany

© 2017 RF360 Europe GmbH and/or its affiliated companies. All rights reserved.

SAW filter 2593 MHz

Data sheet

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm and Qualcomm RF360 are trademarks of Qualcomm Incorporated, registered in the United States and other countries. RF360 is a trademark of Qualcomm Incorporated. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

SAW filter 2593 MHz

Data sheet

Table of contents

1 Application	4
2 Features	4
3 <u>Package</u>	5
4 Pin configuration	
5 Matching circuit	6
6 <u>Characteristics</u>	7
7 Maximum ratings	9
8 Transmission coefficient.	10
9 Reflection coefficients.	
10 Packing material	12
11 Marking	16
12 Soldering profile	17
13 Annotations.	18
14 <u>Cautions and warnings</u>	
Important notes.	

SAW filter 2593 MHz

Data sheet

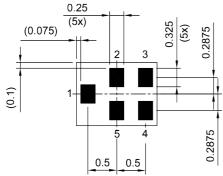
1 Application

- Low-loss SAW RF single filter for TD-LTE Band 41
- Tx post PA
- Usable pass band : 194.0 MHz
- Good insertion attenuation
- Filter impedance 50 Ω

2 Features

- Package size 1.4±0.1 mm × 1.1±0.1 mm
- Package height 0.7 mm (max.)
- Approximate weight 2 mg
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 3 (MSL3)

Figure 1: Picture of component with example of product marking.

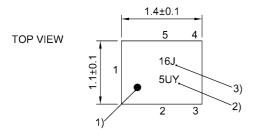


SAW filter 2593 MHz

Data sheet

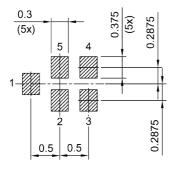
3 Package

BOTTOM VIEW


Pad and pitch tolerance ±0.05

4 Pin configuration

- 1 Input
- 4 Output
- 2, 3, 5 Ground


SIDE VIEW

- 1) Marking for pad number 1
- 2) Example of encoded lot number
- 3) Example of encoded filter type number

Land pattern THRU VIEW

Landing pad tolerance -0.02

Figure 2: Drawing of package with package height A = 0.7 mm (max.). See Sec. Package information (p. 19).

SAW components B8351
SAW filter 2593 MHz

Data sheet

5 Matching circuit

■ L_{p1} = 3.0 nH

■ L_{p4} = 2.7 nH

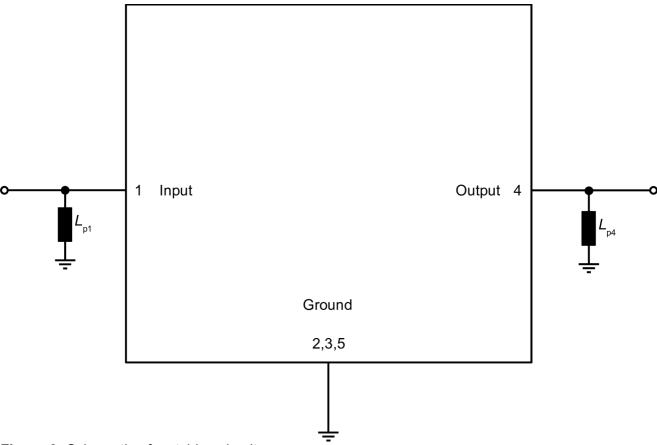


Figure 3: Schematic of matching circuit.

External shunt inductor for ESD protection is recommended at any ports towards antenna.

SAW filter 2593 MHz

Data sheet

6 Characteristics

Temperature range for specification $T_{\rm SPEC} = -30~{\rm ^{\circ}C}~...~+85~{\rm ^{\circ}C}$ Input terminating impedance $Z_{\rm IN} = 50~\Omega$ with par. $3.0~{\rm nH^{1)}}$ Output terminating impedance $Z_{\rm OUT} = 50~\Omega$ with par. $2.7~{\rm nH^{1)}}$

Characteristics				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Center frequency			f _C	_	2593	_	MHz
Maximum insertion attenuation			$\boldsymbol{\alpha}_{\text{max}}$				
	2496 2511	MHz		_	2.7	3.5	dB
	2511 2690	MHz		_	2.2	3.0	dB
	2545 2575	MHz		_	1.6	2.2	dB
	2555 2655	MHz		_	1.6	2.2	dB
Amplitude ripple (p-p)			Δα				
	2496 2690	MHz		_	1.5	2.5	dB
Maximum VSWR			$VSWR_{max}$				
@ input port	2496 2690	MHz		_	2.1	2.5	
@ output port	2496 2690	MHz		_	1.7	2.5	
Average attenuation			$\alpha_{_{avg}}$				
WiFi ch1	2403 2421	MHz		262)	36 ²⁾	_	dB
WiFi ch2	2408 2426	MHz		262)	372)	_	dB
WiFi ch3	2413 2431	MHz		26 ²⁾	382)	_	dB
WiFi ch4	2418 2436	MHz		26 ²⁾	35 ²⁾	_	dB
WiFi ch5	2423 2441	MHz		232)	31 ²⁾	_	dB
WiFi ch6	2428 2446	MHz		232)	29 ²⁾	_	dB
WiFi ch7	2433 2451	MHz		232)	282)	_	dB
WiFi ch8	2438 2456	MHz		25 ²⁾	29 ²⁾	_	dB
WiFi ch9	2443 2461	MHz		25 ²⁾	30 ²⁾	_	dB
WiFi ch10	2448 2466	MHz		5 ²⁾	31 ²⁾	_	dB
WiFi ch11	2453 2471	MHz		5 ²⁾	26 ²⁾	_	dB
Minimum attenuation			$\boldsymbol{\alpha}_{\text{min}}$				
	10 925	MHz		25	39	_	dB
	1565 1615	MHz		20	23	_	dB
	1710 1785	MHz		15	20	_	dB
	1805 1850	MHz		15	20	_	dB
	1880 1920	MHz		15	19	_	dB
	1920 1980	MHz		15	19	_	dB
	2110 2170	MHz		15	20	_	dB
	2300 2400	MHz		15	30	_	dB
	3400 3800	MHz		10	20	_	dB
	4992 5380	MHz		15	27	_	dB
	7488 7990	MHz		3	7	_	dB

SAW filter 2593 MHz

Data sheet

- ¹⁾ See Sec. Matching circuit (p. 6).
- 2) Averaged values over WLAN channels (18 MHz).

SAW components B8351
SAW filter 2593 MHz

Data sheet

7 Maximum ratings

Storage temperature	T _{STG} ¹⁾ = -40 °C +90 °C	
DC voltage	$ V_{DC} = 5.0 \text{ V (max.)}^{2}$	
ESD voltage		
	$V_{\rm ESD}^{3)} = 100 \text{ V (max.)}$	Machine model.
	$V_{ESD}^{4)} = 250 \text{ V (max.)}$	Human body model.
	$V_{\rm ESD}^{5)} = 600 \text{ V (max.)}$	Charged device model.
Input power @ input port: 2496 2690 MHz	P _{IN} = 29 dBm	5 MHz LTE uplink @ 50 °C, 5000h.

Not valid for packaging material. Storage temperature for packaging material is −25 °C to +40 °C.

²⁾ 168h Damp Heat Steady State according to IEC 60068-2-67 Cy.

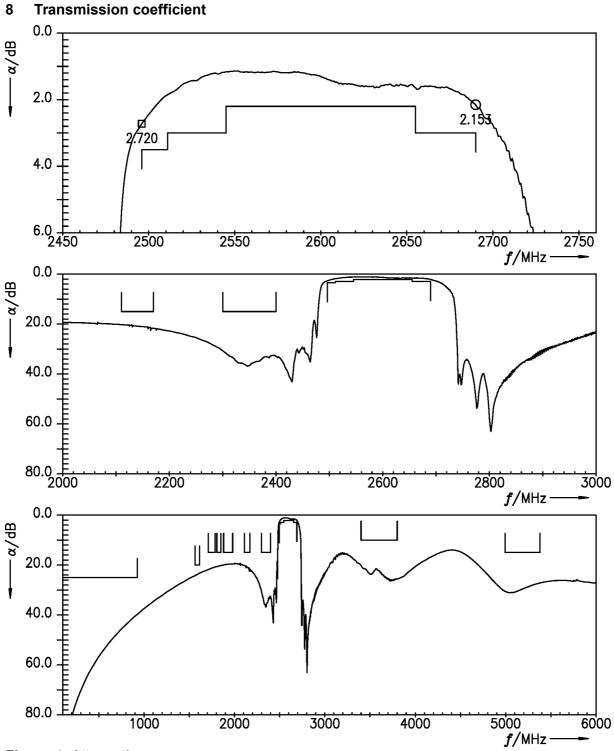
According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses.

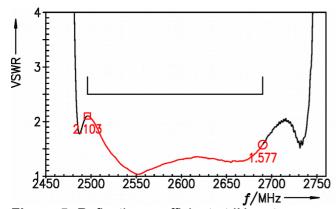
⁴⁾ According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.

⁵⁾ According to JESD22-C101C (CDM – Field Induced Charged Device Model), 3 negative & 3 positive pulses.

SAW filter 2593 MHz

Data sheet




Figure 4: Attenuation.

SAW filter 2593 MHz

Data sheet

9 Reflection coefficients

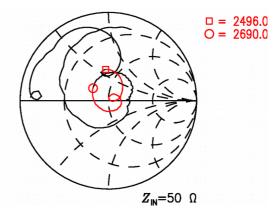
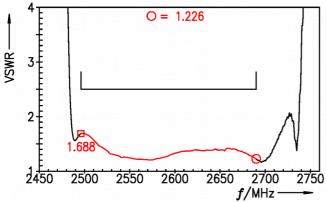



Figure 5: Reflection coefficient at IN port.

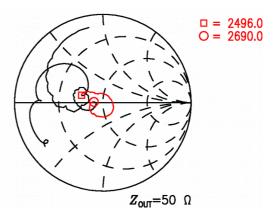
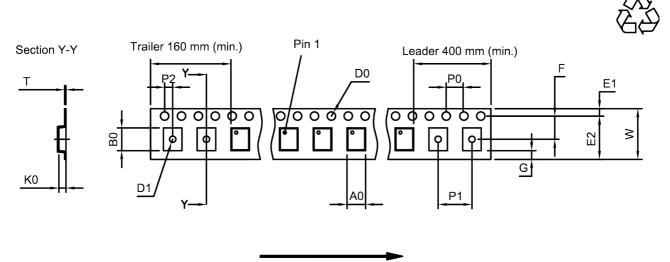


Figure 6: Reflection coefficient at OUT port.



SAW filter 2593 MHz

Data sheet

10 Packing material

10.1 Tape

User direction of unreeling

Figure 7: Drawing of tape (first-angle projection) with tape dimensions according to Table 1.

A ₀	1.32±0.05 mm		E ₂	6.25 mm (min.)	P ₁	4.0±0.1 mm
B ₀	1.65±0.05 mm		F	3.5±0.05 mm	P_2	2.0±0.05 mm
D ₀	1.5+0.1/-0 mm		G	0.75 mm (min.)	Т	0.25±0.03 mm
D ₁ (0.6 mm (min.)	_	K_0	0.75±0.05 mm	W	8.0+0.3/-0.1 mm
E ₁ 1	1.75±0.1 mm		P ₀	4.0±0.1 mm		

Table 1: Tape dimensions.

SAW filter 2593 MHz

Data sheet

10.2 Reel with diameter of 180 mm

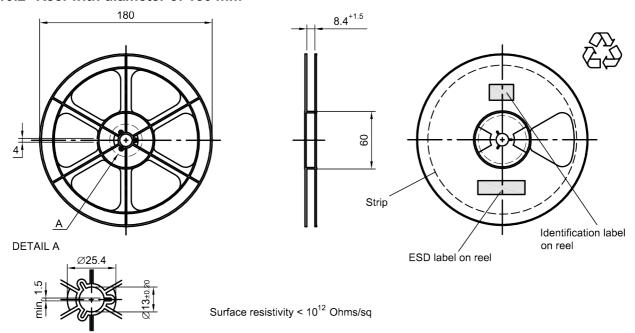


Figure 8: Drawing of reel (first-angle projection) with diameter of 180 mm.

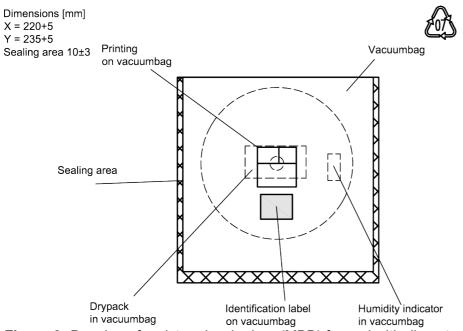


Figure 9: Drawing of moisture barrier bag (MBB) for reel with diameter of 180 mm.

SAW components B8351
SAW filter 2593 MHz

Data sheet

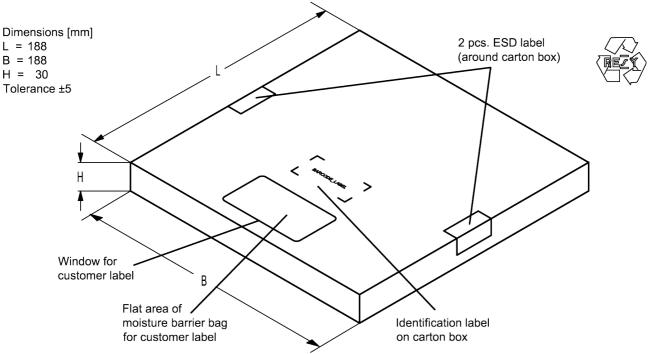


Figure 10: Drawing of folding box for reel with diameter of 180 mm.

10.3 Reel with diameter of 330 mm

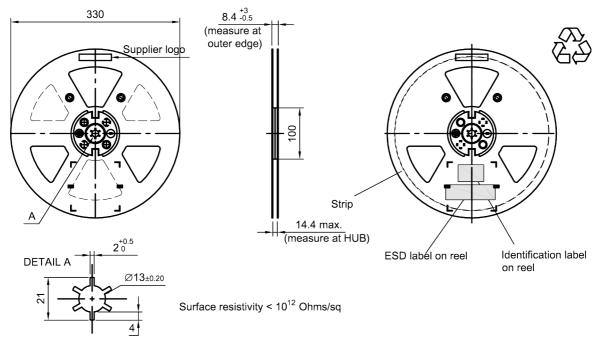


Figure 11: Drawing of reel (first-angle projection) with diameter of 330 mm.

SAW filter 2593 MHz

Data sheet

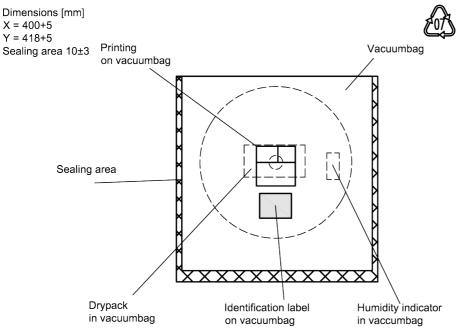


Figure 12: Drawing of moisture barrier bag (MBB) for reel with diameter of 330 mm.

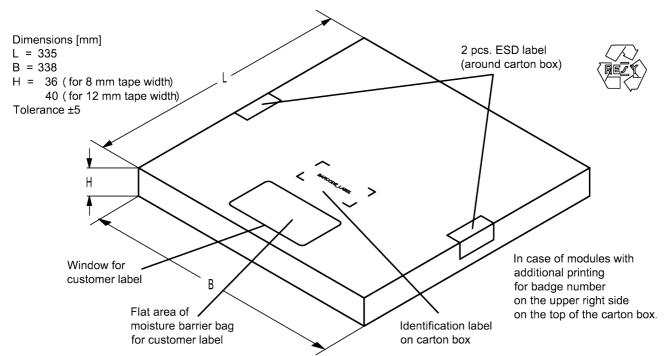


Figure 13: Drawing of folding box for reel with diameter of 330 mm.

SAW filter 2593 MHz

Data sheet

11 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

The 4 digit type number of the ordering code, e.g., B3xxxxB**1234**xxxx, is encoded by a special BASE32 code into a 3 digit marking.

Example of decoding type number marking on device in decimal code.

16J => 1234 1 x 32^2 + 6 x 32^1 + 18 (=J) x 32^0 = 1234

The BASE32 code for product type B8351 is 84Z.

■ Lot number:

The last 5 digits of the lot number, e.g., are encoded based on a special BASE47 code into a 3 digit marking.

Example of decoding lot number marking on device in decimal code.

5UY => 12345 $5 \times 47^2 + 27 (=U) \times 47^1 + 31 (=Y) \times 47^0 =$ 12345

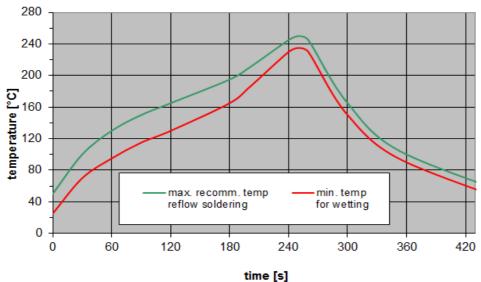
Adopted BASE32 code for type number			
Decimal	Base32	Decimal	Base32
value	code	value	code
0	0	16	G
1	1	17	Н
2	2	18	J
3	3	19	K
4	4	20	M
5	5	21	N
6	6	22	Р
7	7	23	Q
8	8	24	R
9	9	25	S
10	Α	26	T
11	В	27	V
12	С	28	W
13	D	29	Х
14	E	30	Y
15	F	31	Z

Adopted BASE47 code for lot number					
Decimal	Base47	Decimal	Base47		
value	code	value	code		
0	0	24	R		
1	1	25	S		
2	2	26	Т		
3	3	27	U		
4	4	28	V		
5	5	29	W		
6	6	30	X		
7	7	31	Y		
8	8	32	Z		
9	9	33	b		
10	Α	34	d		
11	В	35	f		
12	С	36	h		
13	D	37	n		
14	Е	38	r		
15	F	39	t		
16	G	40	V		
17	Н	41	\		
18	J	42	?		
19	K	43	{		
20	L	44	}		
21	M	45	<		
22	N	46	>		
23	Р				

Adopted BASE47 code for lot number

Table 2: Lists for encoding and decoding of marking.

SAW components	B8351
SAW filter	2593 MHz


Data sheet

12 Soldering profile

The recommended soldering process is in accordance with IEC $60068-2-58-3^{rd}$ edit and IPC/JEDEC J-STD-020B.

≤ 3 K/s
125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
30 s to 70 s
min. 10 s
max. 20 s
_
250 °C +0/-5 °C
230 °C +5/-0 °C for 10 s ± 1 s
≤ 3 K/s
measured at solder pads

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 14: Recommended reflow profile for convection and infrared soldering – lead-free solder.

SAW components

B8351

SAW filter

2593 MHz

Data sheet

13 Annotations

13.1 Matching coils

See TDK inductor pdf-catalog http://www.tdk.co.jp/tefe02/coil.htm#aname1 and Data Library for circuit simulation http://www.tdk.co.jp/etvcl/index.htm.

13.2 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

13.3 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

13.4 Ordering codes and packing units

Ordering code	Packing unit
B39262B8351L210	15000 pcs

Table 4: Ordering codes and packing units.

SAW filter 2593 MHz

Data sheet

14 Cautions and warnings

14.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.rf360jv.com/orderingcodes.

14.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

14.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

14.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.rf360jv.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Signal Conditioning category:

Click to view products by TDK manufacturer:

Other Similar products are found below:

PD0409J5050S2HF HHS-109-PIN AFS14A35-1591.50-T3 JP510S LFB322G45SN1A504 SF2159E FM-104-PIN CER0813B

MAPDCC0005 3A325 BD0810N50100AHF DC0710J5005AHF DC2327J5005AHF LFL15869MTC1B787 X3C19F1-20S

CDBLB455KCAX39-B0 RF1353C 051157-0000 PD0922J5050D2HF 600S150FTRB 1E1305-3 1F1304-3S TP-103-PIN

BD1222J50200AHF BD1722J50100AHF 2450DP39K5400E BD0810J50150AHF BD1722J50200AHF DS-327-PIN MACP-008125
CK07F0 DS-329-PIN DS-313-PIN TP-104-PIN TP-101-PIN HH-128-PIN 8594810000 T-1000-N JP506S XC0900P-10S XC0900B-30S

CHE1260-QAG 11305-10 5962-9091202MXA 3A412S X3C06A4-03S B39000Z3410A4 DSS-333-PIN PD2425J5050S2HF

B39242B4360P810 B39781B8005P810