

NTC thermistors for temperature measurement

Small-Outline No-Lead NTC

Series/Type: Ordering code: T850/10k/G B57850T0103G000

1

Date: Version: 2022-11-18

 \odot TDK Electronics AG 2022. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without TDK Electronics' prior express consent is prohibited.

T850/10k/G

B57850T0103G000

NTC thermistors for temperature measurement

Small-Outline No-Lead NTC

Applications

Surface temperature measurement

Features

- Lead free and Halogen free
- Miniature size thermistor 10 x 3 x 3 mm
- NTC chip is fully sealed with epoxy
- High humidity resistance
- High degree of electrical insulation between measurement surface and NTC provided by Al₂O₃ ceramic
- Wider sensing surface area
- Phosphor bronze electrodes
- Process automation friendly design
- Attachable to metal heatsink or bars and chassis directly
- Good mechanical robustness

Ratings and characteristics

J			
Climatic category (IEC 60068-1) (test without voltage)	-	-	40/155/56
Lower category temperature	-	°C	-40
Upper category temperature	-	°C	155
Rated resistance R _R // Tolerance	R _R	Ω//%	10000 // ±2
Rated temperature	TR	°C	25
B-value: B _(25/100) // Tolerance	В	K // %	3988 // ±1
R/T curve no. // R ₂₅		n // Ω	8016 // 10000
Max power rating at 25°C	P ₂₅	mW	60
Dissipation factor (in air)	δth	mW/K	4.2
Heat capacity	Cth	mJ/K	178
Thermal time constant $- t(0.63)^{1)}$	τ _a	s	approx. 2
Response time			
Voltage proof	Vis	V _{AC} // t	2500 // 60 s
	e		

¹⁾ NTC sensor, from ambient temperature, is pressed to metal surface with temperature of 85 °C.

Delivery mode

According to typical semiconductor packaging tube 272 x 11 x 4.5 mm (drawing on page # 3).

50 components as packaging unit per tube.

Other options on request, e.g.: According to JEDEC standard tray 12.7 x 5.35 inches, 294 components per tray.

Ordering code B57850T0103G000

Dimensions in mm

TPS NTC E PD

2022-11-18

NTC thermistors for temperature measurement Small-Outline No-Lead NTC

B57850T0103G000 T850/10k/G

Packing drawing

50 components packed inside one ESD IC plastic tube

NTC thermistors for temperature measurement

B57850T0103G000 T850/10k/G

Small-Outline No-Lead NTC

NTC resistance temperature curve

R/T curve	8016 / A01		B _(25/100)	3988	K ±1%
R at 25 °C	10000 Ω		R _R at 25 °C 10000 Ω) Ω ±2%
T ℃	R _{Nom} Ω	R _{Min} Ω	R _{Max} Ω	∆R ±%	∆T ±°C
-40	336500	317050	355950	5.8	0.9
-35	242590	229440	255740	5.4	0.8
-30	177000	168020	185980	5.1	0.8
-25	130370	124180	136560	4.7	0.8
-20	97070	92772	101370	4.4	0.8
-15	72929	69923	75936	4.1	0.7
-10	55330	53211	57449	3.8	0.7
-5	42315	40814	43816	3.5	0.7
0	32650	31581	33719	3.3	0.6
5	25388	24623	26152	3.0	0.6
10	19900	19351	20449	2.8	0.6
15	15708	15313	16103	2.5	0.5
20	12490	12205	12775	2.3	0.5
25	10000	9800.0	10200	2.0	0.5
30	8057.0	7874.1	8239.9	2.3	0.5
35	6531.3	6369.1	6693.6	2.5	0.6
40	5327.0	5183.7	5470.3	2.7	0.7
45	4368.7	4242.4	4495.0	2.9	0.7
50	3603.0	3491.9	3714.1	3.1	0.8
55	2986.2	2888.5	3084.0	3.3	0.9
60	2488.0	2402.0	2574.0	3.5	1.0
65	2083.0	2007.4	2158.7	3.6	1.0
70	1752.0	1685.4	1818.6	3.8	1.1
75	1481.4	1422.5	1540.2	4.0	1.2
80	1258.0	1206.0	1310.0	4.1	1.3
85	1072.3	1026.3	1118.4	4.3	1.4
90	917.70	876.92	958.48	4.4	1.4
95	788.52	752.30	824.74	4.6	1.5
100	680.00	647.78	712.22	4.7	1.6
105	588.59	559.87	617.31	4.9	1.7
110	511.20	485.55	536.85	5.0	1.8
115	445.41	422.46	468.35	5.2	1.9
120	389.30	368.74	409.86	5.3	2.0
125	341.70	323.22	360.18	5.4	2.1
130	300.90	284.25	317.55	5.5	2.2
135	265.44	250.43	280.45	5.7	2.3
140	234.80	221.24	248.36	5.8	2.4
145	208.32	196.05	220.59	5.9	2.5
150	185.30	174.18	196.42	6.0	2.6
155	165.35	155.24	175.45	6.1	2.7

NTC thermistors for temperature measurement Small-Outline No-Lead NTC

B57850T0103G000

T850/10k/G

Reliability data

Test	Test conditions	∆R ₂₅ /R ₂₅ (typical)	Remarks
Storage in dry heat	Storage at T = 155 °C, Duration: 1000 h	< 3%	No visible damage
Storage in coldness	Storage at T = -40 °C, Duration: 1000 h	< 3%	No visible damage
Storage in damp heat, steady state with test voltage	Temperature of air: 85 °C; Relative humidity of air: 85% Duration: 56 days Voltage across NTC: 0.3 V _{DC}	< 2%	No visible damage
Rapid change of temperature in air	Lower test temperature: –40 °C Upper test temperature: 155 °C Dwell time: 10 min; Transition time: < 30 s Number of cycles: 1000	< 3%	No visible damage
Voltage proof test	The sensors are placed on a metal plate surface at ambient temperature, max relative humidity 75% The applied voltage, between metal plate and NTC electrodes, is 2500 V _{AC} /60 s/1 mA		No flash over
Insulation test	The sensors are placed on a metal plate surface at ambient temperature, max relative humidity 75% The applied voltage, between metal plate and NTC electrodes, is 500 V_{DC}		Above 100 MΩ

For information only Achievable performance, indicated as a design reference for applications

Test	Test conditions	∆R ₂₅ /R ₂₅	Remarks
		(typical)	
	Medium: Deionized water	< 2%	
	Temperature: 80 °C; Voltage across NTC: 0.3 V _{DC}		
Immersion test	Tested on NTC assembly with extension wires, soldered onto electrodes. Solder joints and electrodes are sealed with a hydrophobic coating material.		No visible damage
	Duration: 1000 h		
	Medium: Deionized water	< 2%	
Rapid change of temperature in water (T-shock)	Lower test temperature: 5 °C Upper test temperature: 95 °C		
	Dwell time: 10 min; Transition time: < 30 s		Noviciblo
	5 V_DC applied with series resistor 10 k Ω	damade	
	Tested on NTC assembly with extension wires, soldered onto electrodes. Solder joints and electrodes are sealed with a hydrophobic coating material.		y e
	Number of cycles: 500		

TPS NTC E PD

NTC thermistors for temperature measurement Small-Outline No-Lead NTC

B57850T0103G000

T850/10k/G

Test	Test conditions	∆R ₂₅ /R ₂₅ (typical)	Remarks
High temperature	Storage at T = 125 °C		No visible
exposure (storage)	t = 1000 h	< 2%	damage
Biased humidity	T = 85 °C		No visible
	Relative humidity of air: 85% t = 1000 h	< 2%	damage
	Test voltage 0.3 V _{DC} on NTC ¹⁾		
Operational life	T = 125 °C		No visible
•	t = 1000 h	< 2%	damage
	Test voltage 0.3 V _{DC} on NTC ¹⁾		
Temperature cycling	Lower test temperature: -55 °C		No visible
	Upper test temperature: 125 °C	< 2%	damage
	Dwell time: max. 30 min. at each temperature		
	Transition time in air: max. 1 min		
	Number of cycles: 1000		
Mechanical shock	Acceleration: 40 g ²		No visible
	Pulse duration: 6 ms	< 1%	damage
	Number of bumps: 3, each direction		
Vibration	Acceleration: 5 g		No visible
	t = 20 min.	< 1%	damage
	12 cycles in each of 3 directions		
	Frequency range: 10 2000 Hz		

Reliability data according to AEC-Q200, Rev. D

1) Self Heating of the NTC thermistor must not exceed 0.2 K, steady state. Test conditions deviating from AEC-Q200, Rev. D.

2) Deviating from AEC-Q200, Rev. D.

NTC thermistors for temperature measurement

Small-Outline No-Lead NTC

B57850T0103G000 T850/10k/G

Cautions and warnings

Storage

- Store thermistors only in original packaging, Moisture Barrier Bag. Do not open the MBB prior to storage.
- Storage conditions in original MBB : storage temperature −25 °C ... +45 °C, relative humidity ≤75% annual mean, <95% maximum 30 days per annum.
- Do not store thermistors where they are exposed to heat or direct sunlight. Otherwise, the packing material may be deformed, causing problems during processing.
- Avoid any sort of aggressive and harmful contamination of alumina ceramic sensing pad surface and the electrode surface during storage, handling and processing.
- Avoid storage of thermistors in harmful environments like corrosive gases (SOx, Cl etc).
- Use up the components from the IC packaging tube after opening the MBB.
- Use thermistors within the time specified after shipment. For leadless components this is 12 months.

Handling

- The alumina ceramic sensing pad surface and the electrodes must not be scratched or damaged before/during/after the mounting and assembly process.
- Use suitable surface cleaning and activating agent prior to the process and avoid aggressive contamination of the ceramic sensing pad surface and the electrode surface during mounting and assembly.
- Washing processes may damage the product due to the possible static or cyclic mechanical loads (e.g. ultrasonic cleaning). They may cause cracks to develop on the product and its parts, which might lead to reduced reliability or lifetime.

Soldering / Welding

- Soldering process:
 - Use rosin type flux in soldering process. Do not use strong acid flux, water soluble flux or flux exceeding 0.1wt% halogen and halogenated substances, as this might affect the product characteristics or reliability.
 - Perform cleaning to fully remove flux and cleaning solvents from the product. Prompt drying of the products after cleaning is required.
 - The applied solder bit temperature and time shall not exceed 400°C and 2 seconds respectively on each thermistor electrodes.
 - Not all available soldering processes are suitable. Please take precautions in selection of your desired process.
- Welding process:
 - Excessive pressure to the phosphor bronze electrodes must be avoided, thermistor in normal condition is able to withstand pressure of 30 N/mm².

- Excessive heating may damage the epoxy compound. Welding parameters must be defined accordingly.
- Not all available welding processes are suitable. Consider the risk of porosity of the welded joint and take precautions in selection of your desired process.

TPS NTC E PD

NTC thermistors for temperature measurement

Small-Outline No-Lead NTC

B57850T0103G000

T850/10k/G

Mounting

- Make sure a flat base fixture is used to place thermistor before soldering/welding to avoid alumina ceramic sensing pad surface getting cracked during mounting and processing.
- Make sure no inclination or lift-up of the ceramic sensing pad occurs during the mounting and assembly process. This might cause deviations in the response time.
- Avoid contamination of the thermistor surface during handling and processing.
- The connections of sensors (e.g. cable end, wire end, plug terminal) may only be exposed to an environment with normal atmospheric conditions within the defined operating temperature range.
- Ensure that adjacent materials are designed for operation at temperatures comparable to the surface temperature of the thermistor. Be sure that surrounding parts and materials can withstand the temperature.
- Avoid using aggressive chemical substances as mounting aids. It must be ensured that no water or other liquids enter the thermistors (e.g. through plug terminals). In particular, water-based substances (e.g. soap suds) must not be used as mounting aids for sensors.

Operation

- Use thermistors only within the specified operating temperature range.
- Use thermistors only within the specified power range.

Do not use NTC thermistors under following environments and conditions, as it might lead to some failures like deterioration of product characteristics:

- In close proximity to splashing water. A water droplet between the outer electrodes needs to be avoided. Dewing and condensation must be avoided.
- Corrosive or deoxidizing gas (Cl₂, H₂S, NH₃, SO_X, NO_X, etc.)
- Volatile or flammable gas.
- Environment with salt water, oils, chemical liquids or organic solvents.
- High vibration environment.
- Be sure to provide an appropriate fail-safe function to prevent secondary product damage caused by malfunction.

This listing does not claim to be complete, but merely reflects the experience of TDK Electronics.

Display of ordering codes for TDK Electronics products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications, on the company website, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.tdk-electronics.tdk.com/orderingcodes.

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, **the products described in this publication may change from time to time**. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.

We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

- 6. Unless otherwise agreed in individual contracts, **all orders are subject to our General Terms and Conditions of Supply.**
- 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.

TPS NTC E PD

Important notes

8. The trade names EPCOS, CarXield, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, InsuGate, LeaXield, MiniBlue, MiniCell, MKD, MKK, ModCap, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap, XieldCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for NTC (Negative Temperature Coefficient) Thermistors category:

Click to view products by TDK manufacturer:

Other Similar products are found below :

 118-253FAJ-P01
 121-202EAC-P01
 123-802EAJ-P01
 128-105NDP-Q02
 B57234S330M
 NTCLE410E3103F
 199-303KAF-A02
 30054-4

 M09N038F
 B57401V2103H062
 500-52AA04-101
 526-31AA19-104
 526-31AN12-202
 103AT-5-1P-FT
 10K3A542I
 111-802EAJ-901
 112

 103FAG-H02
 112-104KAG-B01
 111-182CAG-H01
 112-103FAF-H01
 112-104KBF-F01
 526-31AA79-102
 B57621C5472J62
 44015RC

 194303KEVA01
 B57359V2224J260
 50070974-003-01
 B57621C5472K062
 135-105QAF-J02
 B57230V2103H260
 NTCS0603E3333FHT

 118-802EAJ-P01
 121-103FAC-Q02
 144-101FAG-001
 521-53AW02-104
 GA10K3D232
 CL109R4120
 GA100K6D234
 USUR1000-502G-06

 GA10K3MR1I
 USUR1000-203G-06
 NTCS0603E3333HHT
 GA1K7CG3
 NXFT15WB473FEAB030
 GA10K3A542I
 NTCLE213E3103JHT1

 A1504AS26P2A
 PANR103338-490
 NTCALUG02A502FA
 01C3001SFC3
 01C3001SFC3