

SIMDAD 1812, common-mode chokes 42 V AC/80 V DC, 11 ... 100  $\mu\text{H},$  150 ... 300 mA

 Series/Type:
 B82789C0/S0

 Date:
 August 2019

© TDK Electronics AG 2019. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without TDK Electronics' prior express consent is prohibited.



SIMDAD 1812, common-mode chokes

<u>SMD</u>

Rated voltage 42 V AC/80 V DC Rated inductance 11 ... 100 µH Rated current 150 ... 300 mA

### Construction

- Current-compensated double choke
- Ferrite I core
- Winding: enamel copper wire
- Winding welded to terminals
- Bifilar winding (B82789C0...)
- Sector winding (B82789S0...)

### Features

- Temperature range up to +150 °C (B82789C0/S0\*H)
- Suitable for lead-free reflow soldering as referenced in JEDEC J-STD 020D
- For gold-plated terminals conductive adhesion possible
- Qualified to AEC-Q200
- RoHS-compatible

### Function

■ B82789C0:

Suppression of asymmetrical interference coupled in on lines, whereas data signals up to some MHz can pass unaffectedly.

B82789S0:

Suppression of asymmetrical (by  $L_R$ ) and symmetrical interference (by  $L_{stray}$ ) coupled in on lines. The high-frequency portions of the symmetrical data signal are decreased so far that EMC problems can be significantly reduced.

08/19

2

## Applications

- Automotive applications, e.g. CAN and FlexRay bus
- Industrial field bus systems
- Line cards for telecom

### Terminals

Tinned terminals (B82789C0/S0\*002)

- Base material CuSn6
- Layer composition Ni, Ag, Sn<sup>1)</sup>
- Lead-free tinned

Gold-plated terminals (B82789C0/S0\*001)

- Base material CuSn6
- Layer composition Ni, Ag, Au
- Gold plated

1) Ni-barrier-plated terminals (NiSn) on request (B82789C0/S0\*H052).





B82789C0/S0



## SIMDAD 1812, common-mode chokes

<u>SMD</u>

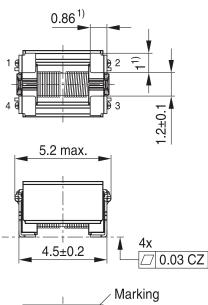
## Marking

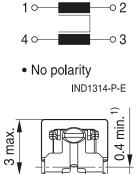
- Marking on component: Manufacturer, bifilar or sector winding (coded), L value (in nH; for version B82789C0/S0\*H052 underlined), date of manufacture (YWWD), two last digits of production order
- Minimum data on reel: Manufacturer, ordering code, L value (in nH), quantity, date of packing

## Delivery mode and packing unit

- 12-mm blister tape, wound on 330-mm Ø reel
- Packing unit: 2500 pcs./reel

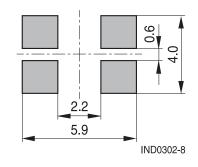
## **公TDK**


B82789C0/S0


## Data and signal line chokes

## SIMDAD 1812, common-mode chokes

<u>SMD</u>


## Dimensional drawing and pin configuration

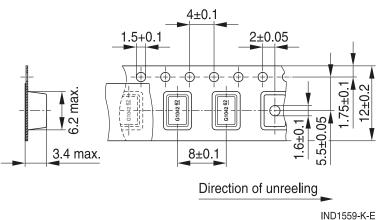


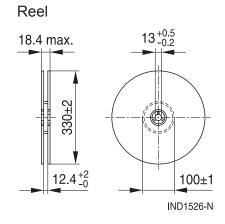


3.2+0.3

## Layout recommendation




<sup>1)</sup> Soldering area


IND1305-G-E

Dimensions in mm

## **Taping and packing**

Blister tape





Dimensions in mm

10-



## SIMDAD 1812, common-mode chokes

<u>SMD</u>

## Technical data and measuring conditions

| Rated voltage V <sub>R</sub>            | 42 V AC (50/60 Hz) / 80 V DC                                                                                                                  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test voltage V <sub>test</sub>          | 250 V DC, 2 s (line/line)                                                                                                                     |  |  |  |
| Rated temperature T <sub>R</sub>        | +85 °C / +110 °C                                                                                                                              |  |  |  |
| Rated current I <sub>R</sub>            | Referred to 50 Hz and rated temperature                                                                                                       |  |  |  |
| Rated inductance L <sub>R</sub>         | Measured with Agilent 4284A at 100 kHz, 0.1 mA, +20 °C Inductance is specified per winding.                                                   |  |  |  |
| Inductance tolerance                    | –30/+50% at +20 °C                                                                                                                            |  |  |  |
| Inductance decrease $\Delta L/L_0$      | Common mode < 10% at DC magnetic bias with I <sub>R</sub> , +20 °C                                                                            |  |  |  |
| Stray inductance L <sub>stray,typ</sub> | Measured with Agilent 4284A at 100 kHz, 5 mA, +20 °C, typical values                                                                          |  |  |  |
| DC resistance R <sub>max</sub>          | Measured at +20 °C, specified per winding                                                                                                     |  |  |  |
| Solderability (lead-free)               | d-free) Dip and look method Sn95.5Ag3.8Cu0.7: +(245 $\pm$ 5) °C, (3 $\pm$ 0.3) Wetting of soldering area $\geq$ 90% (based on IEC 60068-2-58) |  |  |  |
| Resistance to soldering heat            | +260 °C, 40 s as referenced in JEDEC J-STD 020D                                                                                               |  |  |  |
| Climatic category                       | 55/125/56 (B82789*N)<br>55/150/56 (B82789*H)<br>(to IEC 60068-1)                                                                              |  |  |  |
| Storage conditions                      | Mounted: -55 °C +125 °C (B82789C0/S0*N)<br>-55 °C +150 °C (B82789C0/S0*H)<br>Packaged: -25 °C +40 °C, ≤ 75% RH                                |  |  |  |
| Weight Approx. 0.16 g                   |                                                                                                                                               |  |  |  |
|                                         |                                                                                                                                               |  |  |  |

# **公TDK**

## Data and signal line chokes

## SIMDAD 1812, common-mode chokes

<u>SMD</u>

#### Characteristics and ordering codes

| L <sub>R</sub>                                     | L <sub>stray,typ</sub> | I <sub>R</sub> | R <sub>max</sub> | Τ <sub>R</sub> | Ordering code         |                               |  |
|----------------------------------------------------|------------------------|----------------|------------------|----------------|-----------------------|-------------------------------|--|
| μH                                                 | μH                     | mA             | mΩ               | °C             | Gold-plated terminals | Tinned terminals              |  |
| B82789C0/S0*N (operating temperature: -55 +125 °C) |                        |                |                  |                |                       |                               |  |
| 11                                                 | 0.06                   | 300            | 250              | 85             | B82789C0113N001       | B82789C0113N002               |  |
| 22                                                 | 0.10                   | 250            | 580              | 85             | B82789C0223N001       | B82789C0223N002               |  |
| 22                                                 | 3.0                    | 250            | 580              | 85             | B82789S0223N001       | B82789S0223N002               |  |
| 51                                                 | 0.10                   | 250            | 550              | 85             | B82789C0513N001       | B82789C0513N002               |  |
| 100                                                | 0.25                   | 150            | 1500             | 85             | B82789C0104N001       | B82789C0104N002               |  |
| B82789C0/S0*H (operating temperature: -55 +150 °C) |                        |                |                  |                |                       |                               |  |
| 11                                                 | 0.06                   | 300            | 250              | 110            | B82789C0113H001       | B82789C0113H0021)             |  |
| 22                                                 | 0.10                   | 250            | 580              | 110            | B82789C0223H001       | B82789C0223H002 <sup>1)</sup> |  |
| 22                                                 | 3.0                    | 250            | 580              | 110            | B82789S0223H001       | B82789S0223H0021)             |  |
| 51                                                 | 0.10                   | 250            | 550              | 110            | B82789C0513H001       | B82789C0513H0021)             |  |
| 100                                                | 0.25                   | 150            | 1500             | 110            | B82789C0104H001       | B82789C0104H0021)             |  |

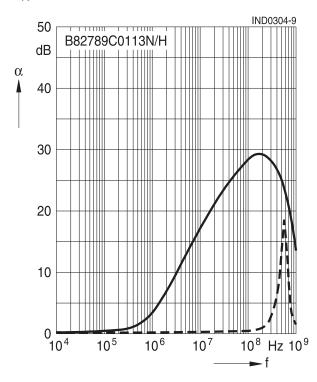
1) Replace the two last digits "02" by "52" for Ni-barrier-plated terminals.

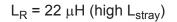
B82789C0/S0

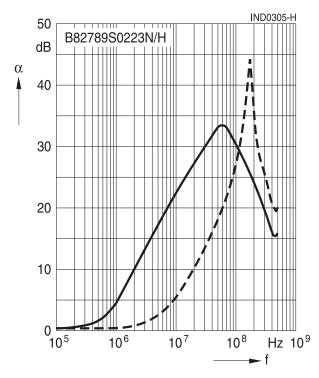
# **公TDK**

## Data and signal line chokes

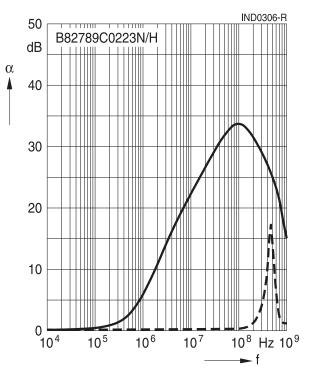
## SIMDAD 1812, common-mode chokes


<u>SMD</u>

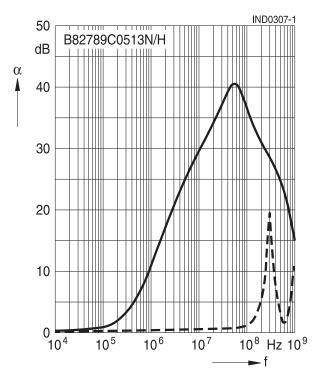

**Insertion loss**  $\alpha$  (typical values at |Z| = 50  $\Omega$ , +20 °C)

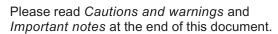

asymmetrical, all branches in parallel (common mode)

---- symmetrical (differential mode)


 $L_R = 11 \ \mu H$ 






 $L_R = 22 \ \mu H \ (low \ L_{stray})$ 



L<sub>R</sub> = 51 μH

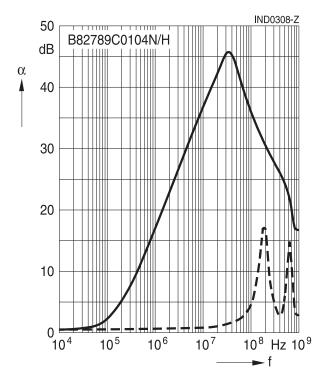




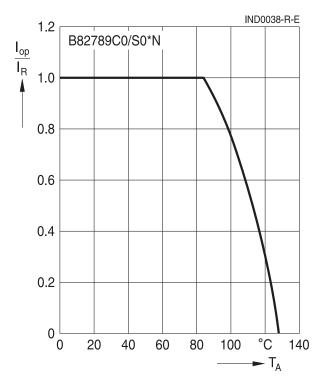




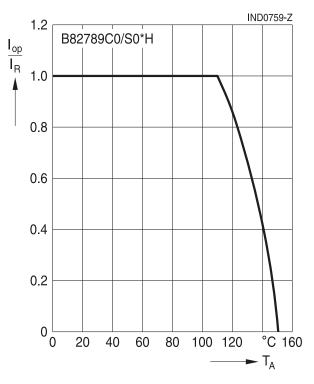
## SIMDAD 1812, common-mode chokes


<u>SMD</u>

**Insertion loss**  $\alpha$  (typical values at |Z| = 50  $\Omega$ , +20 °C)


asymmetrical, all branches in parallel (common mode)

---- symmetrical (differential mode)


L<sub>R</sub> = 100 μH



Current derating  $I_{op}/I_R$  versus ambient temperature (rated temperature  $T_R$  = +85 °C)



Current derating  $I_{op}/I_R$  versus ambient temperature (rated temperature  $T_R$  = +110 °C)



Please read *Cautions and warnings* and *Important notes* at the end of this document.

8 08/19



#### Cautions and warnings

- Please note the recommendations in our Inductors data book (latest edition) and in the data sheets.
  - Particular attention should be paid to the derating curves given there.
  - The soldering conditions should also be observed. Temperatures quoted in relation to wave soldering refer to the pin, not the housing.
- If the components are to be washed varnished it is necessary to check whether the washing varnish agent that is used has a negative effect on the wire insulation, any plastics that are used, or on glued joints. In particular, it is possible for washing varnish agent residues to have a negative effect in the long-term on wire insulation.

Washing processes may damage the product due to the possible static or cyclic mechanical loads (e.g. ultrasonic cleaning). They may cause cracks to develop on the product and its parts, which might lead to reduced reliability or lifetime.

- The following points must be observed if the components are potted in customer applications:
  - Many potting materials shrink as they harden. They therefore exert a pressure on the plastic housing or core. This pressure can have a deleterious effect on electrical properties, and in extreme cases can damage the core or plastic housing mechanically.
  - It is necessary to check whether the potting material used attacks or destroys the wire, wire insulation, plastics or glue.
  - The effect of the potting material can change the high-frequency behaviour of the components.
  - Many coating materials have a negative effect (chemically and mechanically) on the winding wires, insulation materials and connecting points. Customers are always obligated to determine whether and to what extent their coating materials influence the component. Customers are responsible and bear all risk for the use of the coating material. TDK Electronics does not assume any liability for failures of our components that are caused by the coating material.
- Ceramics / Ferrites are sensitive to direct impact. This can cause the core material to flake, or lead to breakage of the core.
- Even for customer-specific products, conclusive validation of the component in the circuit can only be carried out by the customer.

#### **Display of ordering codes for TDK Electronics products**

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications, on the company website, or in order-related documents such as shipping notes, order confirmations and product labels. **The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products**. Detailed information can be found on the Internet under www.tdk-electronics.tdk.com/orderingcodes.



Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, **all orders are subject to our General Terms and Conditions of Supply**.



#### Important notes

- 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.
- 8. The trade names EPCOS, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2018-10

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for tdk manufacturer:

Other Similar products are found below :

VLF5012ST-1R0N2R5 R14493 SWS1000L-24/BL CXA-2115 MCZ1210AH301L2T 78P7200-IH/F MLP2012S1R5TT ACH3218-682-TD01 ACT45B-KIT NL565050T-822J-PF C1005JB1H471K050BA C1608CH1H151J080AA C2012JB1H105K125AB C4532NP01H154J250KA CD75-B2GA331KYGKA CLF10040T-221M CLF12555T-220M R22095\*REPAIRED MLF1005LR12K VLS252015T-3R3M1R0 VLS4012T-150MR65 ZCAT-KIT MPZ2012-KIT NLV32T-R27J-EFD CGA3EANP02A682J080AC CKCM25C0G2A101K060AK CLF10040T-4R7N WTM505090-10K2-5V-G1 VLS252010HBX-R24M-1 CGJ2B2X7R1C222K CGA9M1X7T2J334K CGA8P3X7T2E105M/SOFT CGA6J4C0G2J392J CGA6M3X7R2E154K CGA3E3C0G2E181J CGA2B2C0G1H331J C-WPTX01-E6-KIT CEU-AC01-E6-KIT CERB3UX5R0G105M RLF12545T-100M5R1-PF PFE500F28/T CCT406393-600-36-02 PFC3819QM-181K09B-00 VLF3010AT-100MR49 MMZ0603D330C MPZ2012S102ATD25 MLG0603P-2-KIT MLG1608B18NJ UHV-251A FHV-11AN