DELIVERY SPE	<u>NC</u>	SPEC. No. A-Soft D A T E : Nov., 2		
То	-	Non-C	Controlled	Сору
CUSTOMER'S PRODUCT NAME Please return this specification to TI If orders are placed without returned accepted by your side. RECEIPT CONFIRMA	Bulk and Tape packag CGA2, CGA3, CGA4, C0G,NP0,X7R,X7S,X DK representatives wi d specification, please	AIC CHIP C ging 【RoH CGA5, CG 7T,X8R,X8 ith your sig	GA6, CGA8, CGA9 Typ L Characteristics gnature.	e .
Test conditions in this specificat TDK Corporation Sales Electronic Components Sales & Marketing Group	DATE: ion based on AEC- Engineering Electronic Compo Ceramic Capacito	onents Bus	iness Company	DAY_

APPROVED	Person in charge	APPROVED	CHECKED	Person in charge
	1		I.	

SCOPE

This delivery specification shall be applied to Multilayer ceramic chip capacitors to be delivered to

PRODUCTION PLACES

Production places defined in this specification shall be TDK Corporation, TDK(Suzhou)Co.,Ltd and TDK Components U.S.A.,Inc.

PRODUCT NAME

The name of the product to be defined in this specifications shall be $\underline{CGA} \otimes \underline{OOO} \triangle \Delta \Box \Box \Box \times \underline{O} \times \underline{W} \times \underline{S}$.

REFERENCE STANDARD

JIS C 5101-1:2010	Fixed capacitors for use in electronic equipment-Part 1: Generic specification
C 5101-21 : 2014	Fixed capacitors for use in electronic equipment-Part21 : Sectional specification
	: Fixed surface mount multilayer capacitors of ceramic dielectric, Class1
C 5101-22 : 2014	Fixed capacitors for use in electronic equipment-Part22 : Sectional specification
	: Fixed surface mount multilayer capacitors of ceramic dielectric, Class 2
C 0806-3:2014	Packaging of components for automatic handling - Part 3: Packaging of
	surface mount components on continuous tapes
JEITA RCR-2335 C 2014	Safety application guide for fixed ceramic capacitors for use in electronic
	equipment

CONTENTS

- 1. CODE CONSTRUCTION
- 2. COMBINATION OF RATED CAPACITANCE AND TOLERANCE
- 3. OPERATING TEMPERATURE RANGE
- 4. STORING CONDITION AND TERM
- 5. P.C. BOARD
- 6. INDUSTRIAL WASTE DISPOSAL
- 7. PERFORMANCE
- 8. INSIDE STRUCTURE AND MATERIAL
- 9. CAUTION FOR PRODUCTS WITH SOFT TERMINATION
- SUFI TERMINATIO
- 10. PACKAGING

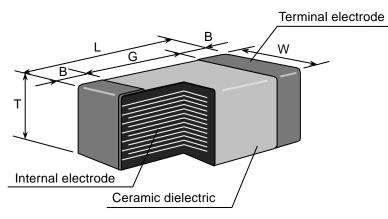
<EXPLANATORY NOTE>

When the mistrust in the spec arises, this specification is given priority. And it will be confirmed by written spec change after conference of both posts involved.

This specification warrants the quality of the ceramic chip capacitor. Capacitors should be evaluated or confirmed a state of mounted on your product.

If the use of the capacitors goes beyond the bounds of this specification, we can not afford to guarantee.

Division	Date	SPEC. No.
Ceramic Capacitors Business Group	November, 2021	A-Soft-i


- 11. RECOMMENDATION
- 12. SOLDERING CONDITION
- 13. CAUTION
- 14. TAPE PACKAGING SPECIFICATION

1. CODE CONSTRUCTION

(Example)	CGA	3	Е	2	X7R	1 H	104	К	Т	***S	
	CGA	6	<u>P</u>	3	X7S	<u>1 H</u>	106	K	<u> </u>	<u> </u>	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	

- (1) Series
- (2) Type

SymbolSeriesCGAFor automotive application

Case size	Case size	Dimensions (Unit : mm)											
Symbol	(EIA style)	L	W	Т	В	G							
2	CGA2 (CC0402)	$1.00 {+0.15 \atop -0.05}$	$0.50 \substack{+0.10 \\ -0.05}$	$0.50 {+0.10 \atop -0.05}$	0.10 min.	0.30 min.							
3	CGA3 (CC0603)	$1.60 \substack{+0.20 \\ -0.10}$	$0.80 \substack{+0.15 \\ -0.10}$	$0.80 \substack{+0.15 \\ -0.10}$	0.20 min.	0.30 min.							
				0.60±0.15									
4	CGA4	$2.00 {+0.45 \atop -0.20}$	$1.25^{+0.25}_{-0.20}$	0.85±0.15	0.20 min.	0.50 min.							
	(CC0805)	-0.20	-0.20	$1.25 \substack{+0.25 \\ -0.20}$									
				0.60±0.15									
				0.85±0.15		1.00 min.							
5	CGA5		$1.60^{+0.30}_{-0.20}$	1.15±0.15	0.20 min.								
	(CC1206)	-0.20	-0.20	1.30±0.20									
				$1.60 \substack{+0.30 \\ -0.20}$									
				$1.60^{+0.30}_{-0.20}$									
6	CGA6	$3.20^{+0.50}_{-0.40}$	2.50±0.30	$2.00 \substack{+0.30 \\ -0.20}$	0.20 min.								
	(CC1210)		-0.40	-0.40	-0.40	-0.40	0.40	-0.40	-0.40	-0.40		$2.30^{\pm 0.30}_{-0.20}$	
				2.50±0.30									
				$2.00 \substack{+0.30 \\ -0.20}$									
8 CGA8 (CC1812)	$4.50 \substack{+0.50 \\ -0.40}$	3.20±0.40	$2.30^{+0.30}_{-0.20}$	0.20 min.									
				2.50±0.30									
9	CGA9	$5.70^{+0.50}_{-0.40}$	5.00±0.40	$2.30^{\mathrm{+0.30}}_{\mathrm{-0.20}}$	0.20 min.								
	(CC2220)	-0.40		2.50±0.30									

*As for each item, please refer to detail page on TDK web.

(3) Thickness

Symbol	Dimension(mm)
В	0.50
С	0.60
Е	0.80
F	0.85
Н	1.15
J	1.25

Symbol	Dimension(mm)
К	1.30
L	1.60
М	2.00
Ν	2.30
Р	2.50

(4) Voltage condition in the life test

* Details are shown in table1 No.16 at 7.PERFORMANCE.

Symbol	Condition
1	Rated Voltage
2	Rated Voltage x 2
3	Rated Voltage x 1.5
4	Rated Voltage x 1.2

(5) Temperature Characteristics

* Details are shown in table 1 No.6 and No.7 at 7.PERFORMANCE.

(6) Rated Voltage

Symbol	Rated Voltage	Symbol	Rated Voltage
2 J	DC 630 V	1 V	DC 35 V
2 W	DC 450 V	1 E	DC 25 V
2 E	DC 250 V	1 C	DC 16 V
2 A	DC 100 V	1 A	DC 10 V
1 H	DC 50 V	0 J	DC 6.3 V

(7) Rated Capacitance Stated in three digits and in units of pico farads (pF).	(Example)	Symbol	Rated Capacitance
The first and Second digits identify the first and		2R2	2.2 pF
second significant figures of the capacitance, the third digit identifies the multiplier.		104	100,000 pF

R is designated for a decimal point.

(8) Capacitance tolerance

* M tolerance shall be standard for over 10uF.

Symbol	Tolerance	Capacitance
С	± 0.25 pF	10pE and under
D	±0.5 pF	10pF and under
J	± 5%	
K	± 10 %	Over 10pF
*M	± 20 %	

(9) Packaging

* CGA2 type is applicable to tape packaging only.

Symbol	Packaging
В	Bulk
Т	Taping

(10) TDK internal code

S : Soft termination

These TDK internal codes are subject to change without notice.

2. COMBINATION OF RATED CAPACITANCE AND TOLERANCE

Class	Temperature Characteristics	Capacitar	nce tolerance	Rated capacitance	
		10pF and	C (±0.25pF)	1, 1.5, 2, 2.2, 3, 3.3, 4, 4.7, 5	
	C0G	under	D (±0.5pF)	6, 6.8, 7, 8, 9, 10	
1	NP0	12pF to 10,000pF		E – 12 series	
		Over 10,000pF	J (± 5%)	E – 6 series	
2	X7R X7S	X7S ur	0.1uF and under	K (± 10 %)	E – 3 series or
Ζ	X7T X8R	Over 0.1uF	K (± 10 %)	E – 6 series	
	X8L		M (± 20 %)		

Capacitance Step in E series

E series		Capacitance Step										
E- 3	1.0			2.2			4.7					
E- 6	1.0 1.5		1.0 1.5 2.2 3.3		.3	4.	.7	6	.8			
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2

3. OPERATING TEMPERATURE RANGE

T.C.	Min. operating Temperature	Max. operating Temperature	Reference Temperature
C0G	-55°C	125°C	25°C
NP0	-55°C	150°C	25°C
X7R/X7S/X7T	-55°C	125°C	25°C
X8R/X8L	-55°C	150°C	25°C

4. STORING CONDITION AND TERM

Storing temperature	Storing humidity	Storing term
5~40°C	20~70%RH	Within 6 months upon receipt.

5. P.C. BOARD

When mounting on an aluminum substrate, the capacitors are more likely to be affected by heat stress from the substrate.

Please inquire separate specification for the large case sizes when mounted on the substrate.

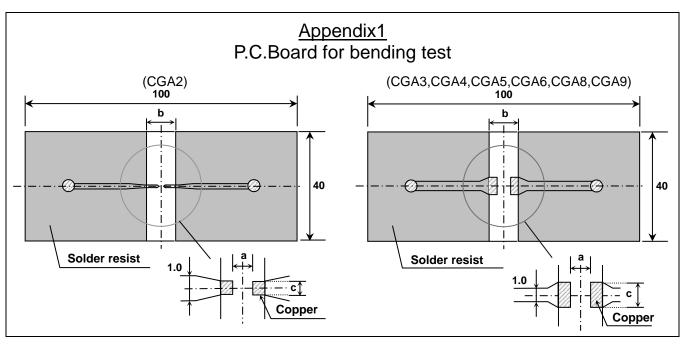
6. INDUSTRIAL WASTE DISPOSAL

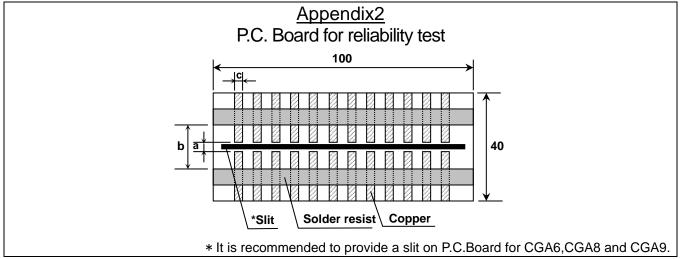
Dispose this product as industrial waste in accordance with the Industrial Waste Law.

7. PERFORMANCE

Table 1

	<u> </u>				Table 1					
No.	Item	ı		Pe	rformance		Test o	r inspectio	on r	nethod
1	External App	No defec performa		ich may affect	Inspect	with ma	agnifying (glas	ss (3×)	
2	Insulation Re	(As for th voltage 1	10,000MΩ or 500MΩ· μ F min. (As for the capacitors of rated voltage 16V DC and lower, 10,000 MΩ or 100MΩ· μ F min.),				age : Rate bacitor of r V DC.) ation time	ate	d voltage 630	
3	Voltage Proc	of			voltage without kdown or other	Class		Rated age(RV)	A	Apply voltage
			damage.					≦100V	3	× rated voltage
						1	100V<	 	1.5	5 × rated voltage
							500) V <rv< td=""><td>1.3</td><td>3 × rated voltage</td></rv<>	1.3	3 × rated voltage
							RV	≦100V	2.5	$5 \times rated voltage$
						2	100V<	 RV≦500V	1.5	$5 \times rated voltage$
							500	OV <rv< td=""><td>1.3</td><td>3 × rated voltage</td></rv<>	1.3	3 × rated voltage
								ation time arge curre		s. 50mA or lowe
4	Capacitance		Within th	e spe	cified tolerance.	《Class	s 1》			
							citance	Measurir	•	Measuring
							pF and ider	frequenc 1MHz±10	-	voltage 0.5 ~ 5 Vrms.
							000pF	1kHz±10%		0.5 ~ 5 viilis.
						« Class	: 2 》			I
							citance	Measurir frequenc		Measuring voltage
							⁼ and der	1kHz±10	%	1.0±0.2Vrms
						Over	10uF	120Hz±20)%	0.5±0.2Vrms.
								acitors of raise applied.	ate	d voltage 6.3V
5	Q	Class1	Please re web.	efer to	detail page on TDK	See No. conditio		s table for	me	easuring
	Dissipation Factor	Class2								
6	Temperature	l !				Tempera	ature co	oefficient s	sha	Il be calculated
	Characteristics of Capacitance		T.C.	Tem	perature Coefficient					
			(ppm/°C)				based on values at 25°C and 85°C temperature.			
	(Class1)	 NP0		0 ± 30						
					0 ± 30	Measuri	ing tem	perature b	belo	w 25°C shall
						be -10°(-	•		
			Capaci	tance	Within ± 0.2% or ± 0.05pF,					
			drift		whichever larger.					
					<u> </u>					


No.	Item	Performance	Test or inspection method			
7	Temperature	Capacitance Change (%)	Capacitance shall be measured by the steps shown in the following table after thermal equilibrium is obtained for each step. ΔC be calculated ref. STEP3 reading			
	Characteristics	No voltage applied				
	(Class2)	X7R : ± 15 X7S : ± 22	Step Temperature(°C)			
		X7T : +22 -33	1 Reference temp. ± 2			
		X8R : ± 15	2 Min. operating temp. ± 2			
		X8L : +15 -40	3 Reference temp. ± 2			
			4 Max. operating temp. ± 2			
			As for Min./ Max. operating temp. and Reference temp., please refer to "3.OPERATING TEMPERATURE RANGE". As for measuring voltage, please contact with our sales representative.			
8	Robustness of	No sign of termination coming off,	Reflow solder the capacitors on a			
	Terminations	breakage of ceramic, or other	P.C.Board shown in Appendix 2. Apply a pushing force gradually at the			
		abnormal signs.	center of a specimen in a horizontal			
			direction of P.C.board. Pushing force : 17.7N			
			(2N is applied for CGA2 type.)			
			Holding time : 10±1s.			
			Pushing force P.C.Board			
9	Bending	No mechanical damage.	Reflow solder the capacitors on a			
			P.C.Board shown in Appendix 1.			
			(2mm is applied for CGA8 and CGA9 types.)			
			50 F			
			R230			
			45 45 (Unit : mm)			
10	Solderability	New solder to cover over 75% of	Solder : Sn-3.0Ag-0.5Cu			
		termination. 25% may have pin holes or rough	Flux : Isopropyl alcohol (JIS K			
		spots but not concentrated in one spot.	8839) Rosin (JIS K 5902) 25% solid solution.			
		Ceramic surface of A sections	Solder temp.: 245±5°C			
		shall not be exposed due to melting or shifting of termination	Dwell time : 3±0.3s.			
		material.	Solder Until both terminations are position : completely soaked.			
		`A section				


No.	lte	em		Perf	ormance	Test or	inspection method		
11	Resistance to solder heat	External appearance	terminati	s are a ons sh	allowed and all be covered at new solder.	Solder : Flux :	Sn-3.0Ag-0.5Cu Isopropyl alcohol (JIS K		
		Capacitance	Charact	eristics	Change from the value before test	Solder temp. :	8839) Rosin (JIS K 5902) 25% solid solution. 260±5°C		
			Class1	C0G NP0	± 2.5% or ± 0.25pF, whichever larger.	Dwell time :	200±3 C 10±1s.		
			Class2	X7R X7S X7T X8R X8L	± 7.5 %	Solder position :	Until both terminations are completely soaked.		
		Q	Meet the		spec	Pre-heating :	Temp. — 110∼140°C Time — 30∼60s.		
		(Class1)	woot the	initia	0000	Leave the capacitors in ambient condition for Class 1 : 6~24h			
		D.F. (Class2)	Meet the	initial	spec.				
		Insulation Resistance	Meet the initial spec.			Class 2 : 24±2h before measurement.			
		Voltage proof	No insula other dar		reakdown or	_			
12	Vibration	External appearance	No mechanical damage.			Applied force : 5G max. Frequency : 10~2,000Hz			
		Capacitance	Characte	eristics	Change from the value before test	Cycle : 12 cyc	sweep time : 20 min. les in each 3 mutually ndicular directions.		
			Class1	C0G NP0	$\pm 2.5\%$ or ± 0.25 pF, whichever larger.		the capacitors on a		
			Class2	X7R X7S X7T X8R X8L	±7.5 %	P.C.Board sho testing.	own in Appendix 2 before		
		Q (Class1)	Meet the	initial	spec.				
		D.F. (Class2)	Meet the	initial	spec.				

`	ntinued)						-						
No.		em			ormance	Test or inspection method Expose the capacitors in the condition							
13	Temperature cycle	External appearance Capacitance				step1 t	Expose the capacitors in the condition step1 through step 4 listed in the following table.						
		Capacitance	Characteristics Change from the value before test		Temp. cycle : 1,000 cycles								
				C0G		Step	Temperature(°C)	Time (min.)					
									Class1	NP0 X7R	Please contact	1	Min. operating temp. ±3
			010	X7S X7T	with our sales representative.	2	Ambient Temp.	2 ~ 5					
			Class2	X8R X8L		3	Max. operating temp. ±2	30 ± 2					
		-		ne initial s		4	Ambient Temp.	2 ~ 5					
		Q (Class1)	Meet the	initial	spec.	As for	Min./ Max. operating	temp please					
		D.F. (Class2)	Meet the	initial	spec.		3.0PERATING TEI						
		Insulation Resistance	Meet the	initial	spec.	conditi	the capacitors in am on for 1 : 6~24h	bient					
		Voltage	No insula	ation br	eakdown or	Class 2 : 24±2h before measurement.							
		proof	other damage.			Reflow solder the capacitors on a P.C.Board shown in Appendix 2 before testing.							
14	Moisture Resistance	External appearance	No mech	anical	damage.	Test temp. : 40±2°C Test humidity : 90~95%RH							
	(Steady State)	Capacitance	Characteristics Change from the value before test			Test time : 500 +24,0h							
			Class1	C0G NP0		conditi	Leave the capacitors in ambient condition for						
			Class2	X7R X7S X7T X8R X8L	Please contact with our sales representative.	Class Reflow P.C.Bo	1:6~24h 2:24±2h before mea v solder the capacitors ard shown in Append	s on a					
		Q	Cono	oitonoo	Q	testing							
		(Class1)		citance Ind over									
			10pF a	nd over r 30pF									
				r 10pF	200+10×C min.								
			C : Rate	ed capa	citance (pF)								
		D.F. (Class2)	200% of	initial s	pec. max.								
		Insulation Resistance	(As for th voltage 1 1,000 Mg	1,000MΩ or $50M\Omega \cdot \mu F$ min. (As for the capacitors of rated voltage 16V DC and lower, 1,000 MΩ or $10M\Omega \cdot \mu F$ min.), whichever smaller.									

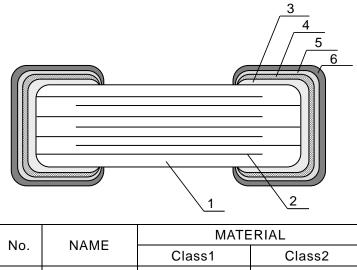
No.	lt	em		Perfor	mance	Test or inspection method		
15	Moisture Resistance	External appearance	No mech	anical d	lamage.	Test temp. : 85±2°C Test humidity : 85%RH		
		Capacitance	Charact	eristics	Change from the value before test	Applied voltage : Rated voltage Test time : 1,000 +48,0h		
							Class1 C0G NP0	Charge/discharge current : 50mA or lower
			Class2	X7R X7S	Please contact with our sales representative.	Leave the capacitors in ambient condition for Class 1 : 6~24h Class 2 : 24±2h before measurement.		
		Q	Capac	itance	Q	Reflow solder the capacitors on a		
		(Class1)	30pF ar		200 min.	P.C.Board shown in Appendix2 before		
			Under		100+10/3×C min.	testing.		
					itance (pF)	Initial value setting (only for class 2)		
		D.F. (Class2)	200% of	•		Voltage conditioning 《After voltage treat the capacitors under testing temperature and voltage for 1 hour,》 leave the		
		Insulation Resistance	voltage 1	e capao 6V DC or 5MΩ·	citors of rated and lower, µF min.),	capacitors in ambient condition for 24±2h before measurement. Use this measurement for initial value.		
16	Life	External appearance	No mech	anical d	lamage.	Test temp. : Maximum operating temperature±2°C Applied voltage : Please contact with our sales representative. Test time : 1,000 +48,0h		
		Capacitance	Charact	eristics	Change from the value before test			
			Class1	C0G NP0	value belore test			
					Class2	X7R X7S	Please contact with our sales representative.	Charge/discharge current : 50mA or lower
				X8R X8L		Leave the capacitors in ambient condition for Class 1 : 6~24h		
		Q	Capa	citance	Q	Class 2 : $24\pm 2h$ before measurement.		
		(Class1)		nd over	 350 min.	Poflow colder the consolters on a		
				nd over to	275+5/2×C min.	Reflow solder the capacitors on a P.C.Board shown in Appendix2 before testing.		
			Unde	r 10pF	200+10×C min.			
			C : Rate	d capaci	itance (pF)	Initial value setting (only for class 2) Voltage conditioning 《After voltage treat		
		D.F.	200% of	initial sp	ec. max.	the capacitors under testing temperature		
		(Class2)				and voltage for 1 hour, leave the		
		Insulation Resistance	(As for th voltage 1	e capao 6V DC Ω or 10N	lΩ·µF min. citors of rated and lower, /Ω·µF min.), er.	capacitors in ambient condition for 24±21 before measurement. Use this measurement for initial value.		

*As for the initial measurement of capacitors (Class2) on number 7,11,12,13 and 14 leave capacitors at 150 0, -10° C for 1 hour and measure the value after leaving capacitors for 24±2h in ambient condition.

	Dimensions	
а	b	С
0.4	1.5	0.5
1.0	3.0	1.2
1.2	4.0	1.65
2.2	5.0	2.0
2.2	5.0	2.9
3.5	7.0	3.7
4.5	8.0	5.6
	0.4 1.0 1.2 2.2 2.2 2.2 3.5	a b 0.4 1.5 1.0 3.0 1.2 4.0 2.2 5.0 2.2 5.0 3.5 7.0

(Unit : mm)

1. Material : Glass Epoxy(As per JIS C6484 GE4)


2. Thickness : Appendix 1 — 0.8mm (CGA2)

- 1.6mm (CGA3,CGA4,CGA5,CGA6,CGA8,CGA9)

: Appendix 2 — 1.6mm

Copper(Thickness:0.035mm)
Solder resist

8. INSIDE STRUCTURE AND MATERIAL

No.	NAME				
NO.	NAME	Class1	Class2		
1	Dielectric	CaZrO₃	BaTiO₃		
2	Electrode	Nickel (Ni)			
3		Copper (Cu)			
4	Termination	Conductive resin (Filler : Ag)			
5	remination	Nickel (Ni)			
6		Tin (Sn)			

9. CAUTION FOR PRODUCTS WITH SOFT TERMINATION

This product contains Ag (Silver) as part of the middle layer of termination. To avoid electromigration of Ag under high temperature and humidity, and failures caused by corrosive gas, chip capacitors on P.C boards should be protected by moisture proof-sealing.

10. PACKAGING

Packaging shall be done to protect the components from the damage during transportation and storing, and a label which has the following information shall be attached.

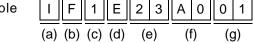
- 10.1 Each plastic bag for bulk packaging contains 1000pcs. And the minimum quantity for Bulk packaging is 1000pcs.
- 10.2 Tape packaging is as per 14. TAPE PACKAGING SPECIFICATION.

* CGA2 [CC0402] type is applicable to tape packaging only.

- 1) Inspection No.
- 2) TDK P/N
- 3) Customer's P/N
- 4) Quantity

*Composition of Inspection No.

Example
$$\underline{F} \stackrel{1}{\underline{(a)}} \stackrel{A}{\underline{(b)}} - \stackrel{2}{\underline{(c)}} \stackrel{3}{\underline{(c)}} - \stackrel{0}{\underline{(c)}} \stackrel{0}{\underline{(c)}} \stackrel{1}{\underline{(c)}}$$


(a) Line code

- (b) Last digit of the year
- (c) Month and A for January and B for February and so on. (Skip I)
- (d) Inspection Date of the month.
- (e) Serial No. of the day

*Composition of new Inspection No.

(Implemented on and after May 1, 2019 in sequence)

Example

- (a) Prefix
- (b) Line code
- (c) Last digit of the year
- (d) Month and A for January and B for February and so on. (Skip I)
- (e) Inspection Date of the month.
- (f) Serial No. of the day(00 ~ ZZ)
- (g) Suffix(00 \sim ZZ)
- * It was shifted to the new inspection No. on and after May 2019, but the implementation timing may be different depending on shipment bases.

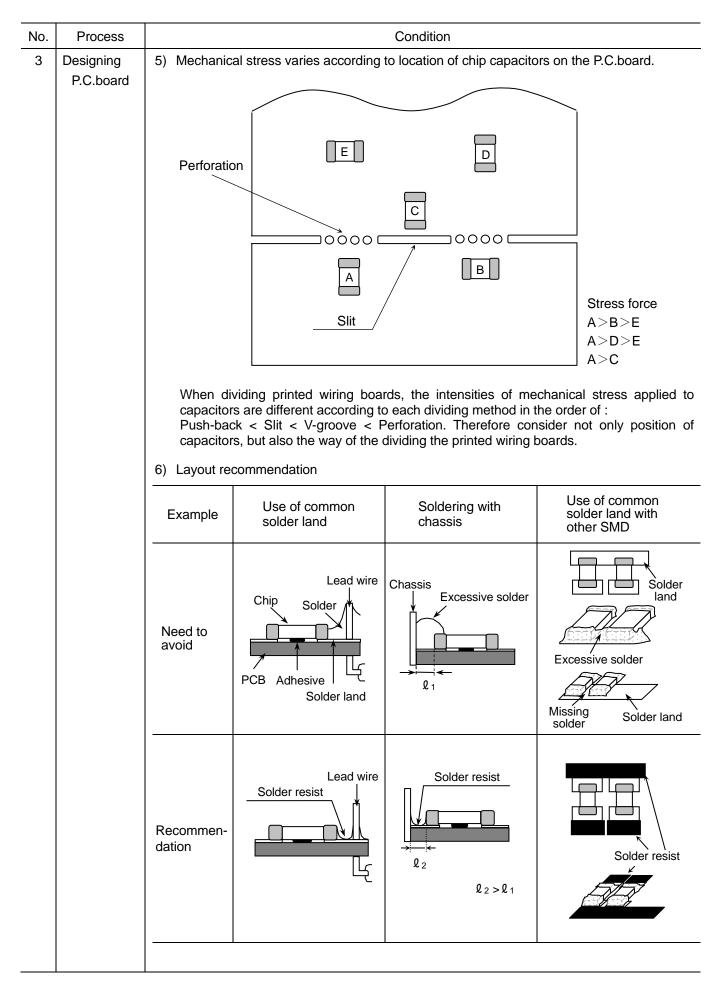
Until the shift is completed, either current or new composition of inspection No. will be applied.

11. RECOMMENDATION

As for CGA6 [CC1210] and larger, It is recommended to provide a slit (about 1mm width) in the board under the components to improve washing Flux. And please make sure to dry detergent up completely before.

12. SOLDERING CONDITION

As for CGA2 [CC0402], CGA6 [CC1210] and larger, reflow soldering only. For other case sizes than the above, reflow soldering is recommended.


13. CAUTION

No.	Process	Condition
1	Operating Condition (Storage, Use, Transportation)	1-1. Storage, Use The capacitors must be stored in an ambient temperature of 5 to 40°C with a relative humidity of 20 to 70%RH. JIS C 60721-3-1 Class 1K2 should be followed for the other climatic conditions.
		 High temperature and humidity environment may affect a capacitor's solder ability because it accelerates terminal oxidization. They also deteriorate performance of taping and packaging. Therefore, SMD capacitors shall be used within 6 months. For capacitors with terminal electrodes consisting of silver or silver-palladium which tend to become oxidized or sulfurized, use as soon as possible, such as within one month after opening the bag.
		 2) When capacitors are stored for a longer time period than 6 months, confirm the solderability of the capacitors prior to use. During storage, keep the minimum packaging unit in its original packaging without opening it. Do not deviate from the above temperature and humidity conditions even for a short term.
		 Corrosive gasses in the air or atmosphere may result in deterioration of the reliability, such as poor solderability of the terminal electrodes. Do not store capacitors where they will be exposed to corrosive gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine ammonia etc.)
		4) Solderability and electrical performance may deteriorate due to photochemical change in the terminal electrode if stored in direct sunlight, or due to condensation from rapid changes in humidity. The capacitors especially which use resin material must be operated and stored in an environment free of dew condensation, as moisture absorption due to condensation may affect the performance.
		5) Refer to JIS C 60721-3-1, class 1K2 for other climate conditions.
		 1-2. Handling in transportation In case of the transportation of the capacitors, the performance of the capacitors may be deteriorated depending on the transportation condition. (Refer to JEITA RCR-2335C 9.2 Handling in transportation)
2	Circuit design	2-1. Operating temperature
	A Caution	 Upper category temperature (maximum operating temperature) is specified. It is necessary to select a capacitor whose rated temperature us higher than the operating temperature. Also, it is necessary to consider the temperature distribution in the equipment and seasonal temperature variation.
		2) Surface temperature including self heating should be below maximum operating
		temperature. Due to dielectric loss, capacitors will heat itself when AC is applied due to ESR. Especially at high frequencies, please be careful that the heat might be so extreme. Also, even if the surface temperature of the capacitor includes self-heating and is the maximum operating temperature or lower, excessive heating of the capacitor due to self-heating may cause deterioration of the characteristics and reliability of the capacitor.
		The self-heating temperature rise of the capacitor changes depending on the difference in heat radiation due to the mounting method to the device, the ambient temperature, the cooling method of the device and circuit board material and the design, etc.
		The load should be contained so that the self-heating temperature rise of the capacitor body in a natural convection environment at an ambient temperature of 25°C remain below 20°C.
		When using in a high-frequency circuit or a circuit in which a capacitor generates heat, such as when a high-frequency ripple current flows, pay attention to the above precautions. (Note that accurate measurement may not be possible with self- heating measurement when the equipment applies cooling other than natural convection such as a cooling fan.)

No.	Process	Condition
2	Circuit design	 The electrical characteristics of the capacitors will vary depending on the temperature. The capacitors should be selected and designed in taking the temperature into consideration.
		2-2. When overvoltage is applied
		Applying overvoltage to a capacitor may cause dielectric breakdown and result in a short circuit. The duration until dielectric breakdown depends on the applied voltage and the ambient temperature.
		2-3. Operating voltage
		 Operating voltage across the terminals should be below the rated voltage. When AC and DC are super imposed, V_{0-P} must be below the rated voltage. — (1) and (2)
		AC or pulse with overshooting, V_{P-P} must be below the rated voltage. — (3), (4) and (5)
		When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use the capacitors within rated voltage containing these Irregular voltage.
		Voltage (1) DC voltage (2) DC+AC voltage (3) AC voltage
		Positional Measurement (Rated voltage)
		Voltage (4) Pulse voltage (A) (5) Pulse voltage (B)
		Positional Measurement (Rated voltage)
		 2) Even below the rated voltage, if repetitive high frequency AC or pulse is applied, the reliability of the capacitors may be reduced.
		 The effective capacitance will vary depending on applied DC and AC voltages. The capacitors should be selected and designed in taking the voltages into consideration.
		 Abnormal voltage (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated voltage.
		5) When capacitors are used in a series connection, it is necessary to add a balancing circuit such as voltage dividing resistors in order to avoid an imbalance in the voltage applied to each capacitor.
		2-4. Frequency When the capacitors (Class 2) are used in AC and/or pulse voltages, the capacitors may vibrate themselves and generate audible sound.

No.	Process	Condition							
3	Designing P.C.board	The amount of solder at the terminations has a direct effect on the reliability of the capacitors.							
		 The greater the amount of solder, the higher the stress on the chip capacitors, and the more likely that it will break. When designing a P.C.board, determine the shape and size of the solder lands to have proper amount of solder on the terminations. 							
			 Avoid using common solder land for multiple terminations and provide individual solder land for each terminations. 						
		3) Size and recomm	nended land dim	ensions.					
			Chip	capacitors So	lder land				
		B A Solder resist							
		Reflow solderin	(mm)						
		Case size Symbol	CGA2 (CC0402)	CGA3 (CC0603)	CGA4 (CC0805)	CGA5 (CC1206)			
		A	0.3 ~ 0.5	0.6 ~ 0.8	0.9 ~ 1.2	2.0 ~ 2.4			
		В	0.35 ~ 0.45	0.6 ~ 0.8	0.7 ~ 0.9	1.0 ~ 1.2			
		С	0.4 ~ 0.6	0.6 ~ 0.8	0.9 ~ 1.2	1.1 ~ 1.6			
		Case size Symbol	CGA6 (CC1210)	CGA8 (CC1812)	CGA9 (CC2220)				
		A	2.0 ~ 2.4	3.1 ~ 3.7	4.1 ~ 4.8				
		В	1.0 ~ 1.2	1.2 ~ 1.4	1.2 ~ 1.4				
		С	1.9 ~ 2.5	2.4 ~ 3.2	4.0 ~ 5.0				
		Flow soldering	(Unrecommend))	(mm)				
		Case size Symbol	CGA3 (CC0603)	CGA4 (CC0805)	CGA5 (CC1206)				
		A	0.7 ~ 1.0	1.0 ~ 1.3	2.1 ~ 2.5				
		В	0.8 ~ 1.0	1.0 ~ 1.2	1.1 ~ 1.3				
		С	0.6 ~ 0.8	0.8 ~ 1.1	1.0 ~ 1.3				

0.	Process		Condition				
3	Designing P.C.board	4)	Recommended	chip capacitors layout is as follo	wing.		
				Disadvantage against bending stress	Advantage against bending stress		
			Mounting face	Perforation or slit	Perforation or slit		
				Break P.C.board with mounted side up.	Break P.C.board with mounted side down.		
				Mount perpendicularly to perforation or slit	Mount in parallel with perforation or slit		
			Chip	Perforation or slit	Perforation or slit		
			arrangement (Direction)				
				Closer to slit is higher stress	Away from slit is less stress		
			Distance from slit				
				(Q ₁ < Q ₂)	(Q 1 < Q 2)		

No.	Process			Condition	
4	Mounting	capacitors to resu 1) Adjust the botto surface and not	ead is adjus ult in cracking m dead cent press it.	ted too low, it may in g. Please take followii	ead to reach on the P.C.board
			e bottom side	gy from mounting hear of the P.C.board.	ad, it is important to provide
			Not r	ecommended	Recommended
		Single-sided mounting		Crack	A support pin is not to be underneath the capacitor.
		Double-sides mounting	Solder	g Crack	Support pin
		to cause crack. P	lease contro		echanical impact on the capacitors sion of the centering jaw and acement of it.
		4-2. Amount of adhe	esive		
					<u>↓</u>
			Example :	CGA4 (CC0805), CG	A5 (CC1206)
			а	0.2mm m	
			b	70 ~ 100µ	
			С	Do not touch the s	older land

No.	Process		Condition			
5	Soldering	5-1. Flux selection Flux can seriously affect the performance of capacitors. Confirm the following to select the appropriate flux.				
		1) It is recommended to use a m Strong flux is not recommende	-	iux (less than 0.1wt% chlorine).		
		2) Excessive flux must be avoided	d. Please provide pro	per amount of flux.		
		3) When water-soluble flux is use	d, enough washing is	s necessary.		
		5-2. Recommended soldering prof Refer to the following temperatu		oldering.		
			Reflow soldering			
		<mark>≺ P</mark> re	Soldering eheating →	ural cooling		
		Reflow soldering is recommended soldering is allowed for other case	Peak Temp time ed for CGA3,CGA4,C se sizes.	GA5 types, but only reflow		
		5-3. Recommended soldering peal Pb free solder is recommended,				
		Temp./Duration	Reflow s	oldering		
		Solder	Peak temp(°C)	Duration(sec.)		
		Lead Free Solder	260 max.	10 max.		
		Sn-Pb Solder	230 max.	20 max.		
		Recommended solder compos	sitions			
		Lead Free Solder : Sn-3.0Ag-	0.5Cu			

No.	Process			Condition						
5	Soldering	5-4. Soldering profile : Flow Refer to the following tem		, ,	lering.					
			F	low soldering						
			Preheati	Soldering	oling					
		Peak Temp ().). U	Peak Temp (C) U U							
			ver 60 se	ec. → ← → ← Over 60 se Peak Temp time	ec. →					
		Doflow coldering is recer		·	C A E to man					
		Reflow soldering is recom	imende	ea tor UGA3,UGA4,C	GA5 types	ö.				
		5-5. Recommended solderin Pb free solder is recomme	• •		•	-				
		Temp./Duration		Flow soldering						
		Solder		Peak temp(°C) Duration		n(sec.)				
		Lead Free Solo	der	260 max. 5 m		ax.				
		Sn-Pb Solder		250 max.	3 m	iax.				
		Recommended solder c Lead Free Solder : Sn-	•							
		5-6. Avoiding thermal shock								
		1) Preheating condition								
		Soldering		Case size		Temp. (°C)				
		Reflow soldering		CGA2(CC0402), CGA3(CC0603), CGA4(CC0805), CGA5(CC1206)		$\Delta T \leq 150$				
		Nellow Soldering		GA6(CC1210), CGA8(CC1812), GA9(CC2220)		$\Delta T \leq 130$				
		Flow soldering		3(CC0603), CGA4(C 5(CC1206)	C0805),	∆T ≦ 150				
		Flow soldering 2) Cooling condition Natural cooling using air cleaning, the temperatu	CGA	5(CC1206) commended. If the chi	ps are dip	ped into a solver				

No.	Process	Condition
5	Soldering	5-7. Amount of solder Excessive solder will induce higher tensile force in chip capacitors when temperature changes and it may result in chip cracking. In sufficient solder may detach the capacitors from the P.C.board.
		Excessive solder Higher tensile force in chip capacitors to cause crack
		Adequate
		Insufficient solder Low robustness may cause contact failure or chip capacitors come off the P.C.board.
		5-8. Sn-Zn solder Sn-Zn solder affects product reliability. Please contact TDK in advance when utilize Sn-Zn solder.
		 5-9. Countermeasure for tombstone The misalignment between the mounted positions of the capacitors and the land patterns should be minimized. The tombstone phenomenon may occur especially the capacitors are mounted (in longitudinal direction) in the same direction of the reflow soldering. (Refer to JEITA RCR-2335C Annex A (Informative), Recommendations to prevent the tombstone phenomenon.)

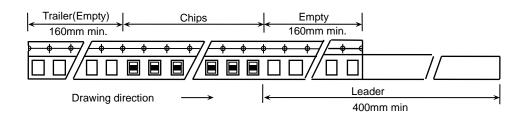
Process	Condition								
Solder repairing				r to below.					
	1) Selection of the so	oldering	a iron tip)					
	Tip temperature of solder iron varies by its type, P.C.board material and sold								
	land size. The higher the tip temperature, the quicker the operation. However								
		-							
	-					e peak temp and			
	time in accordance	ce with	followir	ng recommended	condition.				
			I	Manual soldering					
				(Solder iron)					
	Peak Temp								
	Recommended solder iron condition (Sp. Dh Solder and Lead Free Solder)								
	Case size			Duration (sec.)	Wattage (V				
	CGA2(CC0402) CGA3(CC0603) CGA4(CC0805) CGA5(CC1206)		,						
	CGA6(CC1210) CGA8(CC1812) CGA9(CC2220)	280	max.						
	* Please preheat the c	chip ca	pacitors	with the condition	n in 6-2 to av	oid the thermal shock.			
	2) Direct contact of	the sol	dering ir	on with ceramic di	electric of ch	ip capacitors may			
	 3) It is not recommended to reuse dismounted capacitors. 6-2. Avoiding thermal shock Preheating condition 								
				Case size		Temp. (°C)			
		<u>, </u>		(CC0402), CGA3($\Delta T \leq 150$			
	Manual solde	ering	CGA6((CC1210), CGA8($\Delta T \leq 130$			
		Solder repairing Solder repairing is una 6-1. Solder repair by s 1) Selection of the solar tip temperature of land size. The high heat shock may of Please make surtime in accordance Please make surtime in accordance Please make surtime in accordance CGA2(CC0402) CGA3(CC0603) CGA4(CC0805) CGA5(CC1206) CGA6(CC1210) CGA8(CC1812) CGA9(CC2220) * Please preheat the of cause crack. Do not solar time in accordance 3) It is not recommended 3) It is not recommended CG2. Avoiding thermal Preheating conditi	Solder repairing Solder repairing is unavoida 6-1. Solder repair by solder in 1) Selection of the soldering. Tip temperature of sold land size. The higher the heat shock may cause Please make sure the t time in accordance with Please make sure the t time in accordance with Quick Please make sure the t time in accordance with Quick Recommended solder Case size Temp CGA2(CC0402) CGA3(CC0603) CGA4(CC0805) CGA9(CC1210) CGA9(CC1220) 280 * Please preheat the chip ca 2) Direct contact of the sol cause crack. Do not tou 3) It is not recommended	Solder repairing Solder repairing is unavoidable, refe 6-1. Solder repair by solder iron 1) Selection of the soldering iron tip Tip temperature of solder iron v land size. The higher the tip tem heat shock may cause a crack Please make sure the tip temp. time in accordance with followin Image: second control of the solder iron contro of the solder iron control of the solder iron control	Solder repairing Solder repairing is unavoidable, refer to below. 6-1. Solder repair by solder iron 1) Selection of the soldering iron tip Tip temperature of solder iron varies by its type, F land size. The higher the tip temperature, the quid heat shock may cause a crack in the chip capacit Please make sure the tip temp. before soldering is time in accordance with following recommended Manual soldering Golder iron Q Goldering Q <	Solder repairing Solder repairing is unavoidable, refer to below. 6-1. Solder repair by solder iron 1) Selection of the soldering iron tip Tip temperature of solder iron varies by its type, P.C.board mailand size. The higher the tip temperature, the quicker the ope heat shock may cause a crack in the chip capacitors. Please make sure the tip temp. before soldering and keep the time in accordance with following recommended condition. Manual soldering (Solder iron) Image: sold of the s			

No.	Process	Condition
7	Cleaning	 If an unsuitable cleaning fluid is used, flux residue or some foreign articles may stick to chip capacitors surface to deteriorate especially the insulation resistance.
		2) If cleaning condition is not suitable, it may damage the chip capacitors.
		2)-1. Insufficient washing
		(1) Terminal electrodes may corrode by Halogen in the flux.
		(2) Halogen in the flux may adhere on the surface of capacitors, and lower the insulation resistance.
		(3) Water soluble flux has higher tendency to have above mentioned problems(1) and (2).
		2)-2. Excessive washing
		When ultrasonic cleaning equipment is used, excessive ultrasonic power or direct vibration transfer to a printed wiring board may generate a resonant vibration in the board. This may cause a crack in a capacitor or its solder joints to the board and degradation in the terminal strength of the capacitor. In order to avoid this, the following cleaning conditions are recommended.
		Power : 20 W/ l max.
		Frequency : 40 kHz max. Washing time : 5 minutes max.
		2)-3. If the cleaning fluid is contaminated, density of Halogen increases, and it may
		bring the same result as insufficient cleaning.
8	Coating and molding of the P.C.board	 This product contains Ag (Silver) as part of the middle layer of termination. To avoid electromigration of Ag under high temperature and humidity, and failures caused by corrosive gas, chip capacitors on P.C boards should be protected by moisture proof-sealing.
		2) When the P.C.board is coated, please verify the quality influence on the product.
		 Please verify carefully that there is no harmful decomposing or reaction gas emission during curing which may damage the chip capacitors.
		4) Please verify the curing temperature.
9	Handling after chip mounted Caution	 1) Please pay attention not to bend or distort the P.C.board after soldering in handling otherwise the chip capacitors may crack. Bend

No.	Process	Condition						
9	Handling after chip mounted <u>A</u> Caution	2) Printed circuit board cropping should not be carried out by hand, but by using the proper tooling. Printed circuit board cropping should be carried out using a board cropping jig as shown in the following figure or a board cropping apparatus to prevent inducing mechanical stress on the board.						
		 (1)Example of a board cropping jig Recommended example: The board should be pushed from the back side, close to the cropping jig so that the board is not bent and the stress applied to the capacitor is compressive. Unrecommended example: If the pushing point is far from the cropping jig and the pushing direction is from the front side of the board, large tensile stress is applied to the capacitor, which may cause cracks. 						
		Outline of jig Recommended Unrecommended						
		Printed circuit board board Slot V-groove Board cropping jig						
		 (2)Example of a board cropping machine An outline of a printed circuit board cropping machine is shown below. The top and bottom blades are aligned with one another along the lines with the V-grooves on printed circuit board when cropping the board. Unrecommended example: Misalignment of blade position between top and bottom, right and left, or front and rear blades may cause a crack in the capacitor. 						
		Outline of machine Principle of operation						
		Top blade Printed circuit board V-groove Bottom blade						
		Cross-section Printed circuit board Top blade V-groove Bottom blade						
		Recommended						
		Top-bottom Left-right Front-rear misalignment misalignment misalignment						
		Top blade Top blade Top blade Top blade Top blade Top blade Top blade Top blade Top blade						
		Bottom blade Bottom blade Bottom blade Bottom blade						

No.	Process		Condition			
9	Handling after chip mounted Caution	3) When functional check of the P.C.board is performed, check pin pressure tends to be adjusted higher for fear of loose contact. But if the pressure is excessive and bend the P.C.board, it may crack the chip capacitors or peel the terminations off. Please adjust the check pins not to bend the P.C.board.				
		Item	Not recommended	Recommended		
		Board bending	Termination peeling Check pin	Support pin		
10	Handling of loose chip capacitors	the large of handle wit	case sized chip capacitors are tende	•		
11	Capacitance aging	The capacitors (Class 2) have aging in the capacitance. They may not be used in precision time constant circuit. In case of the time constant circuit, the evaluation should be done well.				
12	Estimated life and estimated failure rate of capacitors	As per the estimated life and the estimated failure rate depend on the temperatur and the voltage. This can be calculated by the equation described in JEITA RCR-2335C Annex F (Informative) Calculation of the estimated lifetime and the estimated failure rate (Voltage acceleration coefficient : 3 multiplication rule, Temperature acceleration coefficient : 10°C rule) The failure rate can be decreased by reducing the temperature and the voltage b they will not be guaranteed.				

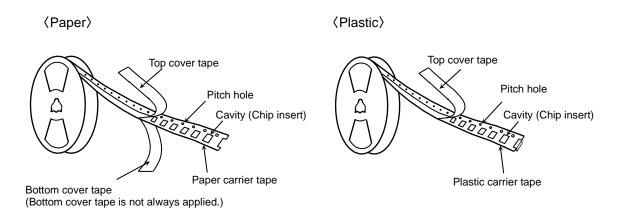
No.	Process	Condition
13	Caution during operation of equipment	 A capacitor shall not be touched directly with bare hands during operation in order to avoid electric shock. Electric energy held by the capacitor may be discharged through the human body when touched with a bare hand. Even when the equipment is off, a capacitor may stay charged. The capacitor should be handled after being completely discharged using a resistor.
		2) The terminals of a capacitor shall not be short-circuited by any accidental contact with a conductive object. A capacitor shall not be exposed to a conductive liquid such as an acid or alkali solution. A conductive object or liquid, such as acid and alkali, between the terminals may lead to the breakdown of a capacitor due to short circuit
		 3) Confirm that the environment to which the equipment will be exposed during transportation and operation meets the specified conditions. Do not to use the equipment in the following environments. (1) Environment where a capacitor is spattered with water or oil (2) Environment where a capacitor is exposed to direct sunlight (3) Environment where a capacitor is exposed to Ozone, ultraviolet rays or radiation (4) Environment where a capacitor exposed to corrosive gas(e.g. hydrogen sulfide, sulfur dioxide, chlorine. ammonia gas etc.) (5) Environment where a capacitor exposed to vibration or mechanical shock exceeding the specified limits. (6) Atmosphere change with causes condensation
14	Others	The product listed in this specification is intended for use in automotive applications under-normal operation and usage conditions.
		The product is not designed or warranted to meet the requirements of application listed below, whose performance and/or quality requires a more stringent level of safety or reliability, or whose failure, malfunction or defect could cause serious damage to society, person or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below or for any other use exceeding the range or conditions set forth in this specification sheet. If you intend to use the products in the applications listed below or if you have special requirements exceeding the range or conditions set forth in this specification, please contact us.
		 Aerospace/Aviation equipment Transportation equipment (electric trains, ships etc.) Medical equipment (Excepting Pharmaceutical Affairs Law classification Class1, 2) Power-generation control equipment Atomic energy-related equipment Seabed equipment Seabed equipment Transportation control equipment Public information-processing equipment Military equipment Electric heating apparatus, burning equipment Safety equipment Safety equipment Other applications that are not considered general-purpose applications
		 (13) Other applications that are not considered general-purpose applications When designing your equipment even for general-purpose applications, you are kindly requested to take into consideration securing protection circuit/device or providing backup circuits in your equipment. In addition, although the product listed in this specification is intended for use in automotive applications as described above, it is not prohibited to use for general electronic equipment, whose performance and/or quality doesn't require a more stringent level of safety or reliability, or whose failure, malfunction or defect could not cause serious damage to society, person or property. Therefore, the description of this caution will be applied, when the product is used in general electronic equipment under a normal operation and usage conditions.


14. TAPE PACKAGING SPECIFICATION

1. CONSTRUCTION AND DIMENSION OF TAPING

1-1. Dimensions of carrier tape

Dimensions of paper tape shall be according to Appendix 3, 4. Dimensions of plastic tape shall be according to Appendix 5, 6.

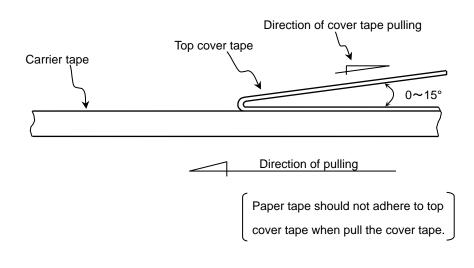

1-2. Bulk part and leader of taping

1-3. Dimensions of reel

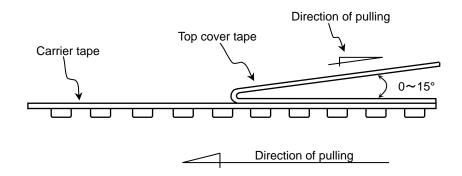
Dimensions of Ø178 reel shall be according to Appendix 7, 8. Dimensions of Ø330 reel shall be according to Appendix 9, 10.

1-4. Structure of taping

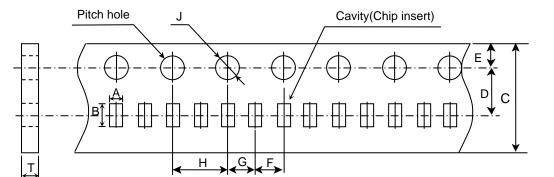
2. CHIP QUANTITY


Please refer to detail page on TDK web.

3. PERFORMANCE SPECIFICATIONS


3-1. Fixing peeling strength (top tape)

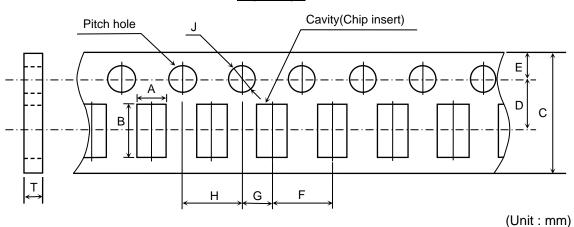
0.05N < Peeling strength < 0.7N



<Plastic>

- 3-2. Carrier tape shall be flexible enough to be wound around a minimum radius of 30mm with components in tape.
- 3-3. The missing of components shall be less than 0.1%
- 3-4. Components shall not stick to fixing tape.
- 3-5. When removing the cover tape, there shall not be difficulties by unfitting clearance gap, burrs and crushes of cavities. Also the sprocket holes shall not be covered by absorbing dust into the suction nozzle.

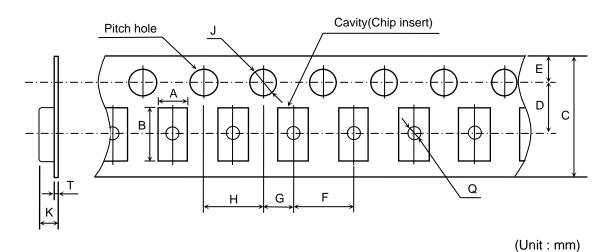
Paper Tape


(Unit : mm)

Symbol Case size	A	В	С	D	E	F
CGA2 (CC0402)	(0.65)	(1.15)	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	2.00 ± 0.05
Symbol Case size	G	Н	J	Т	-	
CGA2 (CC0402)	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 ^{+0.10}	0.60±0.05	-	

() Reference value.

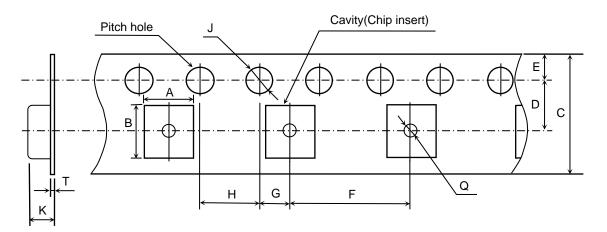
Appendix 4


Paper Tape

Symbol А В С D Е F Case size CGA3 (1.10) (1.90) (CC0603) CGA4 8.00 ± 0.30 3.50 ± 0.05 1.75 ± 0.10 4.00 ± 0.10 (1.50) (2.30) (CC0805) CGA5 (1.90) (3.50) (CC1206) Symbol G н Т J Case size CGA3 (CC0603) Ø 1.5 +0.10 CGA4 2.00 ± 0.05 4.00 ± 0.10 1.20 max. 0 (CC0805) CGA5 (CC1206)

() Reference value.

Plastic Tape

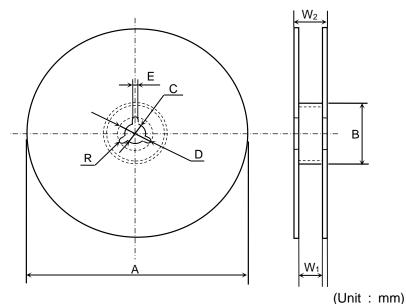


						(••••••)
Symbol Case size	A	В	С	D	E	F
CGA4 (CC0805)	(1.50)	(2.30)	8.00 - 0.20	2 50 . 0.05		
CGA5 (CC1206)	(1.90)	(3.50)	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	4.00 ± 0.10
CGA6 (CC1210)	(2.90)	(3.60)	8.00 ± 0.30 or 12.0 ± 0.30	3.50 ± 0.05 or 5.50 ± 0.05		
Symbol Case size	G	Н	J	К	Т	Q
CGA4 (CC0805) CGA5 (CC1206)	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 +0.10 0	2.50 max.	0.60 max.	Ø 0.50 min.
CGA6 (CC1210)				3.40 max.		

() Reference value.

Exceptionally no hole in the cavity is applied. Please inquire if hole in cavity is mandatory.

Plastic Tape

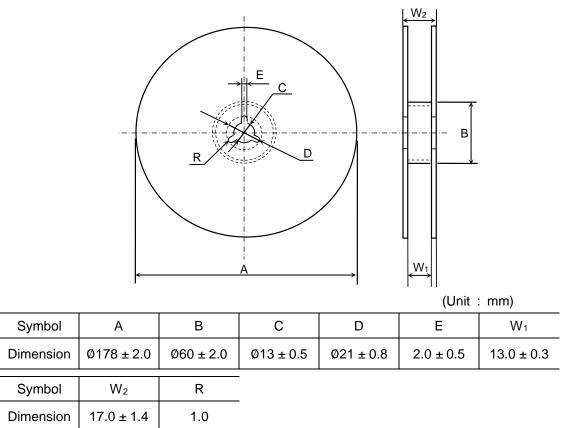


						(Unit : mm)
Symbol Case size	A	В	С	D	Е	F
CGA8 (CC1812)	(3.60)	(4.90)	12.0 + 0.20	5.50 ± 0.05	1.75 ± 0.10	8 00 + 0 10
CGA9 (CC2220)	(5.40)	(6.10)	12.0 ± 0.30	5.50 ± 0.05	1.75 ± 0.10	8.00 ± 0.10
Symbol Case size	G	Н	J	К	Т	Q
CGA8 (CC1812)	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 +0.10	6.50 max.	0.60 max.	Ø 1.50 min.
CGA9 (CC2220)			0			2

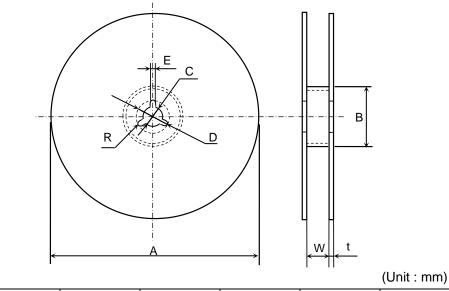
() Reference value.

Exceptionally no hole in the cavity is applied. Please inquire if hole in cavity is mandatory.

<u>Dimensions of reel</u> (Material : Polystyrene) CGA2, CGA3, CGA4, CGA5, CGA6(8mm width taping type)



					(,
Symbol	A	В	С	D	E	W ₁
Dimension	Ø178 ± 2.0	Ø60 ± 2.0	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	9.0 ± 0.3
Symbol	W ₂	R	-			

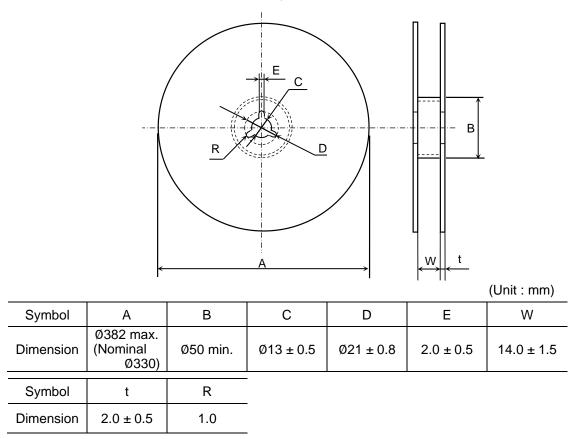

Symbol	W2	R		
Dimension	13.0 ± 1.4	1.0		

Appendix 8

Dimensions of reel (Material : Polystyrene) CGA6(12mm width taping type), CGA8, CGA9

<u>Dimensions of reel</u> (Material : Polystyrene) CGA2, CGA3, CGA4, CGA5, CGA6(8mm width taping type)

Symbol	А	В	С	D	E	W
Dimension	Ø382 max. (Nominal Ø330)	Ø50 min.	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	10.0 ± 1.5
Symbol	t	R				


Appendix 10

1.0

 2.0 ± 0.5

Dimension

Dimensions of reel (Material : Polystyrene) CGA6(12mm width taping type), CGA8, CGA9

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by TDK manufacturer:

Other Similar products are found below :

M39014/02-1218V M39014/02-1225V M39014/22-0631 D55342E07B523DR-T/R NCA1206X7R103K50TRPF NCA1206X7R104K16TRPF NIN-FC2R7JTRF NMC0402NPO220J50TRPF NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R392K50TRPF NMC0603NPO201J50TRPF NMC0603X5R475M6.3TRPF NMC0603X7R333K16TRPF NMC0805NPO820J50TRPF NMC0805X7R224K16TRPLPF NMC1206X7R102K50TRPF NMC1206X7R106K10TRPLPF NMC1206X7R475K10TRPLPF C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT CDR33BX104AKUR CDR33BX683AKUS CGA3E1X7R1C684K CL10C0R8BB8ANNC C1005X5R0G225M C2012X7R2E223K C3216C0G2J272J D55342E07B35E7R-T/R NMC0402NPO150G50TRPF NMC0402NPO560F50TRPF NMC0402X7R562J25TRPF NMC0603NPO102J25TRPF NMC1206X7R332K50TRPF 726632-1 CGA6M3X7R1H225K CGA5L2X7R2A105K CGA3E2X8R1H223K CDR33BX823AKUR/M500 CDR35BX474AKUR/M500 CDR35BX104BKUR/M500 69995D NMC0201X5R473K6.3TRPF NMC0201X7R221K25TRPF NMC0402X5R105K10TRPF NMC0402X5R224K10TRPF NMC0603X7R104J25TRPF