SPECIFICATION

SPEC. No. A-High-d D A T E : Aug, 2018

То

Non-Controlled Copy

CUSTOMER'S PRODUCT NAME	TDK'S PRODUCT NAME Multilayer Ceramic Chip Capacitors High Voltage Series Bulk and Tape packaging 【RoHS compliant】 CGA6,CGA7,CGA8,CGA9 Type C0G,X7R Characteristics
-------------------------	--

Please return this specification to TDK representatives with your signature. If orders are placed without returned specification, please allow us to judge that specification is accepted by your side.

RECEIPT CONFIRMATION

DATE:	YEAR	MONTH	DAY

Test conditions in this specification based on AEC-Q200 for automotive application.

TDK Corporation	
Sales	Engineering
Electronic Components Sales & Marketing Group	Electronic Components Business Company Ceramic Capacitors Business Group

APPROVED	Person in charge	APPROVED	CHECKED	Person in charge

	Number ction	CGA	•8•M	•1•)	X7R • 3	3A	103	K	200 • K •
Series N	lame 🔹		II	I	I	Ī	Ī	T	II
Dimensi	ions L x W (mm)								
Code	Length	Width	Terminal						
6	3.20 ± 0.40	2.50 ± 0.30	0.20 min.						
7	4.50 ± 0.40	2.00 ± 0.30	0.20 min.						
8	4.50 ± 0.40	3.20 ± 0.40	0.20 min.						
9	5.70 ± 0.40	5.00 ± 0.40	0.20 min.						
Thickne	ss T Code (mm)								
Code	Thickness	Code	Thickness						
F	0.85 mm	M	2.00 mm						
	1,10 mm	N	2.30 mm						
GK	1.30 mm	P	2.50 mm						
L	1.60 mm	Q	2.80 mm						
		100 million (100 m							
Temper	ature Characteri rature Temperat teristics Capacitar	ure Coefficient	or Temperature Range		tage (DC) 🗣				
Temper	rature Temperat	ture Coefficient nce Change		Code V	oltage (DC)				
Temper Charact COG X7R	rature Temperat teristics Capacitar 0±30 pp ±15%	ture Coefficient nce Change m/°C	Range	Code V 3A 1 3D 2					
Temper Charact COG X7R Nominal The capac three digit pico Farac	Temperat teristics Temperat Capacitar 0±30 pp ±15% Capacitance (p citance is expressed codes and in units ds (pF). The first a	bure Coefficient here Change here Change	Range -55 to +125°C -55 to +125°C acitance Tolerance de Tolerance	Code V 3A 1 3D 2 3F 3	oltage (DC) ,000∨ ,000∨				
Temper Charact COG X7R Nominal The capac three digit pico Farac second di	Temperat teristics Temperat Capacitar 0±30 pp ±15% Capacitance (p citance is expressed codes and in units ds (pF). The first a lights identify the f	DF) Capa and Confirst F	Range -55 to +125°C -55 to +125°C acitance Tolerance terrance ± 1pF	Code V 3A 1 3D 2 3F 3	oltage (DC) 000V 000V 000V	Code	Thickness	Code	Thickness
Temper Charact COG X7R Nominal The capace three digit pico Farac second di and secon	Temperat teristics Temperat Capacitar 0±30 pp ±15% Capacitance (p citance is expressed codes and in units ds (pF). The first a ligits identify the fi	DF) Capa and Confirst F s of J	Range -55 to +125°C -55 to +125°C acitance Tolerance de Tolerance ± 1pF ± 5%	Code V <u>3A</u> 1 <u>3D</u> 2 <u>3F</u> 3 Ce Nomin	oltage (DC) 000V 000V 000V nal Thickness				Thickness 2.50 mm
Temper Charact COG X7R Nominal The capace three digit pico Farac second di and secon the capaci	Temperat teristics Temperat Capacitar 0±30 pp ±15% Capacitance (p citance is expressed codes and in units ds (pF). The first a ligits identify the fi d significant figures itance. The third of	bure Coefficient here Change m/°C DF) • d in Capa and Coefficient first F s of J digit K	Range -55 to +125°C -55 to +125°C -55 to +125°C acitance Tolerance ± 1pF ± 5% ± 10%	Code V <u>3A</u> 1 <u>3D</u> 2 <u>3F</u> 3 Ce Nomin <u>Code</u>	oltage (DC) 000V 000V 000V 000V nal Thickness Thickness	Code	Thickness 1.60 mm 2,00 mm	and the owner of the owner	the second s
Temper Charact COG X7R Nominal The capac three digit pico Farac second di and secon the capaci identifies th	Temperat teristics Temperat Capacitar 0±30 pp ±15% Capacitance (p citance is expressed a codes and in units ds (pF). The first a ligits identify the f ad significant figures tance. The third of the multiplier.	DF) Capa and Confirst F s of J	Range -55 to +125°C -55 to +125°C acitance Tolerance de Tolerance ± 1pF ± 5%	Code V 3A 1 3D 2 3F 3 Ce Nomin Code 085	oltage (DC) 000V 000V 000V 000V nal Thickness Thickness 0.85 mm	Code 160	1.60 mm	250	2.50 mm
Temper Charact COG X7R Nominal The capac three digit pico Farac second di and secon the capaci identifies the Ex. 100=1	Temperat teristics Temperat Capacitar 0±30 pp ±15% Capacitance (p citance is expressed codes and in units ds (pF). The first a igits identify the f nd significant figures itance. The third of the multiplier. 10pF; 101=100pF;	br Coefficient here Change m/*C bF) • d in s of and Coefficient first F s of J digit K M	Range -55 to +125°C -55 to +125°C -55 to +125°C acitance Tolerance ± 1pF ± 5% ± 10%	Code V <u>3A</u> 1 <u>3D</u> 2 3F 3 Ce Nomin <u>Code</u> 085 110	oltage (DC) 000V 000V 000V 000V nal Thickness Thickness 0.85 mm 1.10 mm	Code 160 200	1.60 mm 2.00 mm	250	2.50 mm
Temper Charact COG X7R Nominal The capaci three digit pico Farac second di and secon the capaci identifies t	Temperat teristics Temperat Capacitar 0±30 pp ±15% Capacitance (p citance is expressed codes and in units ds (pF). The first a igits identify the f nd significant figures itance. The third of the multiplier. 10pF; 101=100pF;	bure Coefficient here Change m/*C DF) • d in Capa and Coo first F s of J digit K M	Range -55 to +125°C -55 to +125°C acitance Tolerance ± 1pF ± 5% ± 10% ± 20%	Code V <u>3A</u> 1 <u>3D</u> 2 3F 3 Ce Nomin <u>Code</u> 085 110	oltage (DC) 000V 000V 000V 000V 000V 000V 000V 0.05 mm 1.10 mm 1.30 mm	Code 160 200 230	1.60 mm 2.00 mm	250	2.50 mm

 A
 1/8 mm Keel, 4 mm Fitch
 Code
 Description

 K
 178 mm Reel, 8 mm Pitch
 A, C
 TDK Internal Code

1. SCOPE

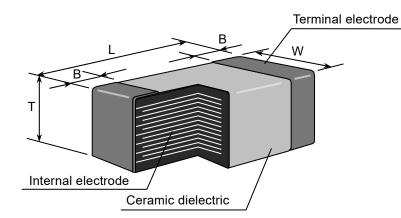
This specification is applicable to chip type multilayer ceramic capacitors with a priority over the other relevant specifications.

Production places defined in this specification shall be TDK Corporation Japan, TDK(Suzhou)Co.,Ltd and TDK Components U.S.A. Inc.

EXPLANATORY NOTE:

This specification warrants the quality of the ceramic chip capacitor. Capacitors should be evaluated or confirmed a state of mounted on your product.

If the use of capacitors goes beyond the bounds of this specification, we can not afford to guarantee.


2. CODE CONSTRUCTION

(Example)	CGA	6	М	1	C0G	3 A	102	J	Т	0000	
	CGA	8	K	1	X7R	3 D	222	Μ	<u> </u>	<u>0000</u>	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	

Symbol	Series
CGA	For automotive application

(2) Type

(1)

Case size	Туре	Dimensions (Unit : mm)				
Symbol	(EIA style)	L	W	Т	В	
6	CGA6	3.20±0.40	2.50±0.30	2.00±0.20	0.20 min.	
0	(CC1210)	3.20±0.40	2.50±0.50	2.50±0.30	0.20 mm.	
				0.85±0.15		
	0017			1.10±0.20		
7	CGA7 (CC1808)	4.50±0.40	4.50±0.40	2.00±0.20	1.30±0.20	0.20 min.
	(CC 1000)			1.60±0.20	1	
				1.30±0.20		
8	CGA8 4.50±0.40		3.20±0.40	1.60±0.20	0.20 min.	
0	(CC1812)	4.50±0.40	3.20±0.40	2.00±0.20	0.20 mm.	
				2.50±0.30		
9	CGA9 (CC2220)	5.70±0.40	5.00±0.40	2.80±0.30	0.20 min.	

*As for each item, please refer to the table A in the end of the specification.

(3) Thickness

Thickness	Dimension(mm)
F	0.85
G	1.10
K	1.30
L	1.60

Thickness	Dimension(mm)
М	2.00
Р	2.50
Q	2.80

Condition

Rated Voltage

Sign

1

(4) Voltage condition in the life test

* Details are shown in table1 No.16 at 8.PERFORMANCE.

(5) Temperature Characteristics * Details are shown in table 1 No.6 and No.7 at 8.PERFORMANCE.

(6) Rated Voltage			Symbo	ol	Rated Voltage
			3 A		DC 1kV
			3 D		DC 2kV
			3 F		DC 3kV
(7) Rated Capacitance Stated in three digits and in units of pico farac	ds (pF).	(Exan	^{nple)} Symbo	ol	Rated Capacitance
The first and second digits identify the first an			101		100 pF
second significant figures of the capacitance, third digit identifies the multiplier.	the		222		2,200 pF
(8) Capacitance tolerance	Symb	loc	Tolerance		Capacitance

) Capacitance tolerance	Symbol	Tolerance	Capacitance
	F	± 1 pF	10pF
	J	± 5%	
	K	± 10 %	Over 10pF
	М	± 20 %	
		•	

(9) Packaging	Symbol	Packaging
	В	Bulk
	Т	Taping

(10) TDK internal code

3. RATED CAPACITANCE AND TOLERANCE

Class	Temperature Characteristics	Capacitar	nce tolerance	Rated capacitance
4	606	10pF	F (±1 pF)	10
1	C0G	Over 10pF	K (± 10 %)	E – 12 series
2	X7R		= 10 %) ± 20 %)	E – 3 series

3.1 Standard combination of rated capacitance and tolerances

3.2 Capacitance Step in E series

	E series		Capacitance Step										
	E- 3		1.0 2.2					4.7					
_	E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2

4. OPERATING TEMPERATURE RANGE

T.C.	Min. operating Temperature	Max. operating Temperature	Reference Temperature
C0G	-55°C	125°C	25°C
X7R	-55°C	125°C	25°C

5. STORING CONDITION AND TERM

5 to 40°C at 20 to 70%RH

6 months Max. upon receipt.

6. P.C. BOARD

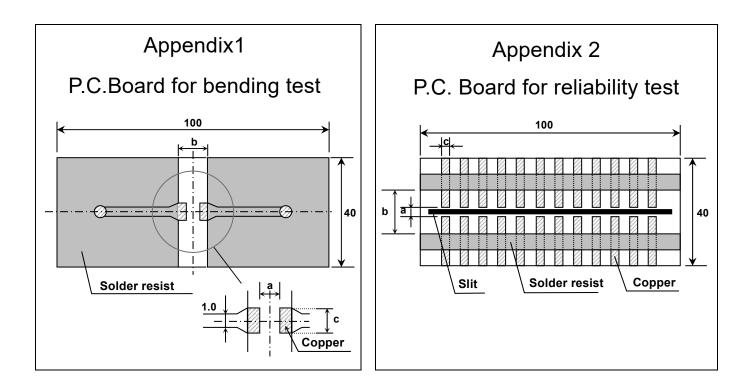
This specification not applicable to Aluminum or some other substrate for such application, please state so and inquire separate specification.

7. INDUSTRIAL WASTE DISPOSAL

Dispose this product as industrial waste in accordance with the Industrial Waste Law.

8. PERFORMANCE

No.	Item	Performance	Test or inspection method
1	External Appearance	No defects which may affect performance.	Inspect with magnifying glass (3×).
2	Insulation Resistance	10,000MΩ min.	Apply 500V DC for 60s.
3	Voltage Proof	Withstand test voltage without insulation breakdown or other damage.	1.2 times of rated voltage Above DC voltage shall be applied for 1s. Charge / discharge current shall not exceed 50mA.
4	Capacitance	Within the specified tolerance.	《 Class 1》 Measuring frequency Measuring voltage 1000pF and under 1MHz±10% 0.5~5 Vrms. Over 1kHz±10% 0.5~5 Vrms. 1000pF 1kHz±10% 0.5~2 Vrms. Weasuring frequency Measuring voltage 1kHz±10% 1.0±0.2Vrms
5	Q (Class1) Dissipation Factor (Class2)	Please refer to the table A in the end of the specification.	See No.4 in this table for measuring condition.
6	Temperature Characteristics of Capacitance (Class1)	T.C.Temperature Coefficient (ppm/°C)COG 0 ± 30 Capacitance drift within $\pm 0.2\%$ or ± 0.05 pF, whichever larger.	Temperature coefficient shall be calculated based on values at 25°C and 85°C temperature. Measuring temperature below 25°C shall be -10°C and -25°C.
7	Temperature Characteristics of Capacitance (Class2)	Capacitance Change (%) No voltage applied X7R : ± 15	Capacitance shall be measured by the steps shown in the following table after thermal equilibrium is obtained for each step. ΔC be calculated ref. STEP3 readingStep Temperature(°C)125 ± 22-55 ± 2325 ± 24125 ± 2As for measuring voltage, please refer to th

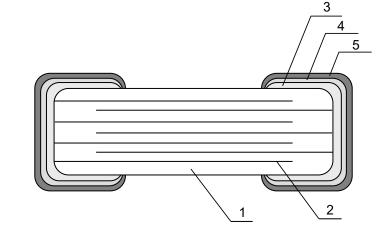

No.	Item	Performance	Test or inspection method
8	Robustness of Terminations	No sign of termination coming off, breakage of ceramic, or other abnormal signs.	Reflow solder the capacitors on a P.C.Board shown in Appendix 2 and apply a pushing force of 17.7N with 10±1s. Pushing force Capacitor
9	Bending	No mechanical damage.	Reflow solder the capacitors on a P.C.Board shown in Appendix 1 and bend it for 2mm. (1mm is applied for 1.30mm or thinner thickness of Class2 items.) 50 F R230 45 45 45 (Unit : mm)
10	Solderability	New solder to cover over 75% of termination. 25% may have pin holes or rough spots but not concentrated in one spot. Ceramic surface of A sections shall not be exposed due to melting or shifting of termination material.	Completely soak both terminations in solder at the following conditions. Solder : Sn-3.0Ag-0.5Cu or Sn-37Pb Temperature : 245±5°C(Sn-3.0Ag-0.5Cu) 235±5°C(Sn-37Pb) Soaking time : 3±0.3s(Sn-3.0Ag-0.5Cu) 2±0.2s(Sn-37Pb) Flux: Isopropyl alcohol (JIS K 8839) Rosin (JIS K 5902) 25% solid solution.

No.	lt	em		Perfo	ormance	Test or inspection method
11	Resistance to solder heat	External appearance	terminatio	ons sh	llowed and all be covered at new solder.	Completely soak both terminations in solder at the following conditions. – 260±5°C for 10±1s.
		Capacitance	Characte Class1	eristics C0G	Change from the value before test ± 2.5 %	Preheating condition Temp.: 110 ~ 140°C Time : 30 ~ 60s.
			Class2	X7R	± 7.5 %	
		Q (Class1)	Meet the	initial	spec.	Solder : Sn-3.0Ag-0.5Cu or Sn-37Pb Flux : Isopropyl alcohol (JIS K 8839)
		D.F. (Class2)	Meet the	initial s	spec.	Rosin (JIS K 5902) 25% solid solution.
		Insulation Resistance	Meet the	initial	spec.	Leave the capacitors in ambient condition for 6 to 24h (Class1) or 24±2h
		Voltage proof	No insula other dan		eakdown or	(Class2) before measurement.
12	Vibration	External appearance	No mech	anical	damage.	Reflow solder the capacitors on a P.C.Board shown in Appendix 2 before
		Capacitance	Characte	eristics	Change from the value before test	testing.
			Class1	C0G	± 2.5 %	Vibrate the capacitors with following conditions.
			Class2	X7R	± 7.5 %	Applied force : 5G max. Frequency : 10~2,000Hz
		Q (Class1)	Meet the	initial	spec.	 Duration : 20 min. Cycle : 12 cycles in each 3 mutually perpendicular directions.
		D.F. Meet the initial spec. (Class2)		spec.		

No.	lte	em	Performance			Test or inspection method			
13	Temperature cycle	External appearance	No mech	No mechanical damage.			solder the capacitor ard shown in Append		
		Capacitance	Charact	eristics	Change from the value before test	step1 th	the capacitors in the repart of the the tended of tended of the tended of te		
			Class1	C0G	Please refer to the table A in		onsecutively.	hinnt	
			Class2	X7R	the end of the specification.	conditio	he capacitors in aml on for 6 to 24h (Class Class 2) before mea	s 1) or	
		Q	Meet the	initial	spec.	Step	Temperature(°C)	Time (min.)	
		(Class1)				1	-55 ± 3	30 ± 3	
		D.F. (Class2)	Meet the	initial	spec.	2	Ambient Temp.	2~5	
		Insulation		Meet the initial spec.			125 ± 2	30 ± 2	
		Resistance				4	Ambient Temp.	2~5	
14	Moisture Resistance (Steady	External appearance Capacitance	No mech	nanical	damage.		solder the capacitor ard shown in Append		
	State)	Capacitance	Charac	teristics	Change from the value before test				
			Class1	C0G	Please refer to the table A in		at temperature 40±2 for 500 +24,0h.	°C, 90 to	
			Class2	X7R	the end of the specification.	Leave t	he capacitors in aml	bient	
		Q			1		n for 6 to 24h (Clas		
		(Class1)	Capao	citance	Q	24±2h (Class2) before mea	surement.	
				nd over					
			10pF and over under 30pF 2754		275+5/2×C min.				
					citance (pF)	_			
		D.F. (Class2)	200% of	initial s	spec. max.				
		Insulation Resistance	1,000MC	Ω min.					

No.	Ite	em		Perfo	rmance	Test or inspection method		
15	Moisture Resistance	External appearance	No mech	anical o	damage.	Reflow solder the capacitors on a P.C.Board shown in Appendix2 before		
		Capacitance	Charact	eristics	Change from the value before test	testing. Apply DC1kV at temperature 85±2°C		
			Class1	C0G	Please refer to the table A in	and 85%RH for 1,000 +48,0h. Charge/discharge current shall not		
			Class2	X7R	the end of the specification.	exceed 50mA.		
		Q (Class 1)	Capac	itance	Q	Leave the capacitors in ambient condition for 6 to 24h (Class1) or 24±2h		
		(Class1)	30pF ar	nd over	200 min.	(Class2) before measurement.		
			Under	30pF	100+10/3×C min.	Voltage conditioning (only for class 2) Voltage treat the capacitors under testing		
				•	itance (pF)	temperature and voltage for 1 hour.		
		D.F. (Class2)	200% of i	nitial sp	bec. max.	Leave the capacitors in ambient condition for 24±2h before		
		Insulation	500MΩ m	nin.		measurement.		
		Resistance				Use this measurement for initial value.		
16	Life	External appearance	No mechanical damage.			Reflow solder the capacitors on a P.C.Board shown in Appendix2 before		
		Capacitance	Charact	eristics	Change from the value before test	testing. Test condition : maximum operating		
			Class1	C0G	Please refer to the table A in	temperature ±2°C for 1,000 +48,0h As for applied voltage, please refer to		
			Class2	X7R	the end of the specification.	the table A in the end of the specification. Charge/discharge current shall not		
		Q		. 4		exceed 50mA.		
		(Class1)		citance nd over	Q 350 and over	Leave the capacitors in ambient		
			· · · · · · · · · · · · · · · · · · ·	and ove		condition for 6 to 24h (Class1) or 24±2h (Class2) before measurement.		
					itance (pF)	Voltage conditioning (only for class 2)		
		D.F. (Class2)	200% of i	200% of initial spec. max.		Voltage treat the capacitors under testing temperature and voltage for 1 hour.		
		Insulation	1,000MΩ	min.		Leave the capacitors in ambient		
		Resistance				condition for 24±2h before measurement.		
						Use this measurement for initial value.		

*As for the initial measurement of capacitors (Class2) on number 7,11,12,13 and 14 leave capacitors at 150 –10,0°C for 1 hour and measure the value after leaving capacitors for 24±2h in ambient condition.


(Unit : mm)

Туре	Dimensions				
TDK(EIA style)	а	b	С		
CGA6 (CC1210)	2.2	5.0	2.9		
CGA7 (CC1808)	3.5	7.0	2.5		
CGA8 (CC1812)	3.5	7.0	3.7		
CGA9 (CC2220)	4.5	8.0	5.6		

- 1. Material : Glass Epoxy(As per JIS C6484 GE4)
- 2. Thickness : 1.6mm

Copper(Thickness:0.035mm)
Solder resist

9. INSIDE STRUCTURE AND MATERIAL

No	NAME	MATE	RIAL			
No.	NAME	Class1	Class2			
1	Dielectric	CaZrO₃	BaTiO₃			
2	Electrode	Nickel (Ni)				
3		Coppe	r (Cu)			
4	Termination	Nickel (Ni)				
5		Tin (Sn)				

10. PACKAGING

Packaging shall be done to protect the components from the damage during transportation and storing, and a label which has the following information shall be attached.

- 1) Total number of components in a plastic bag for bulk packaging : 1000pcs
- 2) Tape packaging is as per 14. TAPE PACKAGING SPECIFICATION.
 - 1) Inspection No.
 - 2) TDK P/N
 - 3) Customer's P/N
 - 4) Quantity

Example

Example

*Composition of Inspection No.

$$\frac{F}{(a)} \frac{8}{(b)} \frac{A}{(c)} - \frac{23}{(d)} - \frac{001}{(e)}$$

a) Line code

- b) Last digit of the year
- c) Month and A for January and B for February and so on. (Skip I)
- d) Inspection Date of the month.
- e) Serial No. of the day

*Composition of new Inspection No. (Will be implemented on and after Jan. 1, 2019)

ΙF	9	А	2	3	А	0	0	1
(a) (b)	(c)	(d)	(6	e)	(1	f)	(9	<u></u>)

- (a) Prefix
- (b) Line code
- (c) Last digit of the year
- (d) Month and A for January and B for February and so on. (Skip I)
- (e) Inspection Date of the month.
- (f) Serial No. of the day(00 \sim ZZ)
- (g) Suffix(00 ~ ZZ)
- * It is planned to shift to the new inspection No. on and after January 2019, but the implementation timing may be different depending on shipment bases.

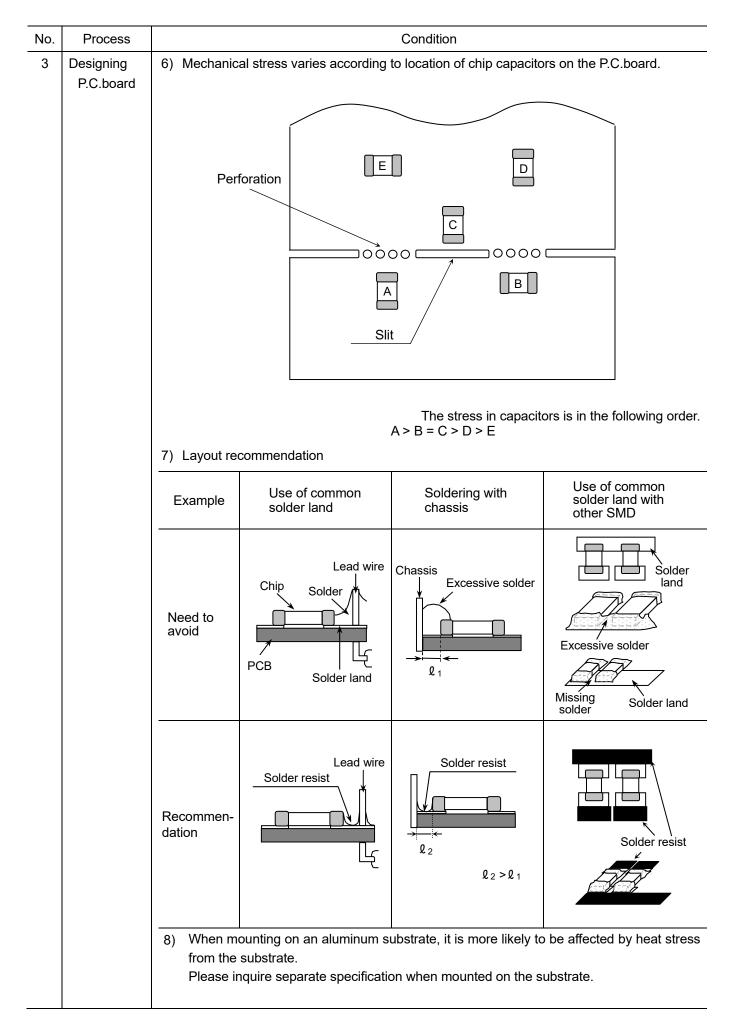
Until the shift is completed, either current or new composition of inspection No. will be applied.

11. RECOMMENDATION

It is recommended to provide a slit (about 1mm wide) in the board under the components to improve washing Flux. And please make sure to dry detergent up completely before.

It is recommended to use activated flux (Chlorine content : less than 0.1wt%) such Rosin due to high voltage usage.

12. SOLDERING CONDITION


Reflow soldering only.

13. CAUTION

No.	Process	Condition
1	Operating Condition (Storage, Use, Transportation)	 Storage, Use The capacitors must be stored in an ambient temperature of 5 to 40°C with a relative humidity of 20 to 70%RH. The products should be used within 6 months upon receipt. The capacitors must be operated and stored in an environment free of dew condensation and these gases such as Hydrogen Sulphide, Hydrogen Sulphate, Chlorine, Ammonia and sulfur. Avoid storing in sun light and falling of dew. Do not use capacitors reliability. Capacitors should be tested for the solderability when they are stored for long tim 1-2. Handling in transportation In case of the transportation of the capacitors, the performance of the capacitors may be deteriorated depending on the transportation condition. (Refer to JEITA RCR-2335C 9.2 Handling in transportation)
2	Circuit design	 2-1. Operating temperature Operating temperature should be followed strictly within this specification, especial be careful with maximum temperature. 1) Do not use capacitors above the maximum allowable operating temperature. 2) Surface temperature including self heating should be below maximum operating temperature. (Due to dielectric loss, capacitors will heat itself when AC is applied. Especially at high frequencies around its SRF, the heat might be so extreme that it may damag itself or the product mounted on. Please design the circuit so that the maximum temperature of the capacitors including the self heating to be below the maximum allowable operating temperature. Temperature rise at capacitor surface shall be below 20°C) 3) The electrical characteristics of the capacitors will vary depending on the temperature into consideration. 2-2. Operating voltage 1) Operating voltage across the terminals should be below the rated voltage.
		Irregular voltage. Voltage (1) DC voltage (2) DC+AC voltage (3) AC voltage
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
		Voltage (4) Pulse voltage (A) (5) Pulse voltage (B) Positional Measurement (Rated voltage) VP-P VP-P

No.	Process			Condition					
2	Circuit design		 Even below the rated voltage, if repetitive high frequency AC or pulse is applied, th reliability of the capacitors may be reduced. 						
		 The effective capacitance will vary depending on applied DC and AC voltages. The capacitors should be selected and designed in taking the voltages into consideration. 							
			• •	elves and genera	•	ges, the			
3	Designing P.C.board	capacitors. 1) The greater th and the more shape and siz terminations.	ne amount of sold likely that it will k ze of the solder la	nations has a direct der, the higher the preak. When desig ands to have prope nd for multiple ter	stress on the chi ning a P.C.board er amount of sold	p capacitors, , determine the er on the			
		solder land fo	r each terminatio	ns.					
		3) Size and recommended land dimensions.							
		Chip capacitors							
		Reflow sold		1	l	(mm)			
		Type Symbol	CGA6 (CC1210)	CGA7 (CC1808)	CGA8 (CC1812)	CGA9 (CC2220)			
		A	2.0 - 2.4	3.1 - 3.7	3.1 - 3.7	4.1 - 4.8			
		В	1.0 - 1.2	1.2 - 1.4	1.2 - 1.4	1.2 - 1.4			
		C	1.9 - 2.5	1.5 – 2.0	2.4 - 3.2	4.0 - 5.0			
		D	1.0 - 1.3	1.0 - 1.3	1.0 - 1.3	1.0 - 1.3			
		components completely b	to improve was before.	hing flux. And ple	ease make sure	te board under th to dry detergent u tess than 0.1wt%			

۷o.	Process		Condition				
3	Designing P.C.board	5) Recommended chip capacitors layout is as following.					
				Disadvantage against bending stress	Advantage against bending stress		
		Moui fac		Perforation or slit	Perforation or slit		
				Break P.C.board with mounted side up.	Break P.C.board with mounted side down.		
				Mount perpendicularly to perforation or slit	Mount in parallel with perforation or slit		
			Chip arrangement (Direction)	Perforation or slit	Perforation or slit		
				Closer to slit is higher stress	Away from slit is less stress		
		Distanc sl		ℓ ₁ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	$ \begin{array}{c} $		

No.	Process		Condition			
No. 4	Mounting	 4-1. Stress from mounting head If the mounting head is adjusted too low, it may induce excessive stress in the chip capacitors to result in cracking. Please take following precautions. 1) Adjust the bottom dead center of the mounting head to reach on the P.C.board surface and not press it. 2) Adjust the mounting head pressure to be 1 to 3N of static weight. 3) To minimize the impact energy from mounting head, it is important to provide support from the bottom side of the P.C.board. See following examples. 				
			Not recommended	Recommended		
		Single sided mounting	Crack	Support pin		
		Double-sides mounting	Solder peeling Crack	Support pin		
		to cause crack.	ing jaw is worn out, it may give me Please control the close up dimens t preventive maintenance and repla	ion of the centering jaw and		

No.	Process		Con	dition
5	Soldering	5-1. Flux selection Flux can seriously aff select the appropriate f		nce of capacitors. Confirm the following to
		 It is recommended to Strong flux is not reco 	use a mildly activ	vated rosin flux (less than 0.1wt% chlorine).
		_		provide proper amount of flux.
		3) When water-soluble f	lux is used, enoug	h washing is necessary.
		5-2. Recommended sold	ering profile by var	ious methods
			Reflow	soldering
			Preheating	Soldering → k→
		Peat Tem C (°C)		Peak Temp time
				al soldering
		Deal	, i i i i i i i i i i i i i i i i i i i	der iron)
		Peak Temp (C) . (C)		ing 3sec. (As short as possible)
		※ As for peak temperature	of manual soldering	, please refer "5-6. Solder repair by solder iron".
		5-3. Recommended sold	ering peak temp a	nd peak temp duration
		Temp./Duration	Reflow s	oldering
		Solder	Peak temp(°C)	Duration(sec.)
		Sn-Pb Solder	230 max.	20 max.
		Lead Free Solder	260 max.	10 max.
		Recommended solde Lead Free Solder : S Sn-Pb solder : Sn-3	Sn-3.0Ag-0.5Cu	

No.	Process	Condition
5	Soldering	5-4. Avoiding thermal shock
		1) Preheating condition
		Soldering Temp. (°C)
		Reflow soldering $\Delta T \leq 130$
		Manual soldering $\Delta T \leq 130$
		 2) Cooling condition Natural cooling using air is recommended. If the chips are dipped into a solvent for cleaning, the temperature difference (ΔT) must be less than 100°C. 5-5. Amount of solder Excessive solder will induce higher tensile force in chip capacitors when
		temperature changes and it may result in chip cracking. In sufficient solder ma detach the capacitors from the P.C.board.
		Excessive solder Higher tensile force in chip capacitors to cause crack
		Adequate Maximum amount Minimum amount
		Insufficient solder Low robustness may cause contact failure or chip capacitors come off the P.C.board.
		 5-6. Solder repair by solder iron 1) Selection of the soldering iron tip Tip temperature of solder iron varies by its type, P.C.board material and solder land size. The higher the tip temperature, the quicker the operation. However, heat shock may cause a crack in the chip capacitors. Please make sure the tip temp. before soldering and keep the peak temp and time in accordance with following recommended condition.
		Recommended solder iron condition (Sn-Pb Solder and Lead Free Solder)
		Temp. (°C)Duration (sec.)Wattage (W)Shape (mm)
		280 max. 3 max. 20 max. Ø 3.0 max.
		* Please preheat the chip capacitors with the condition in 5-4 to avoid the thermal sho
		 Direct contact of the soldering iron with ceramic dielectric of chip capacitors may cause crack. Do not touch the ceramic dielectric and the terminations by solder iron.

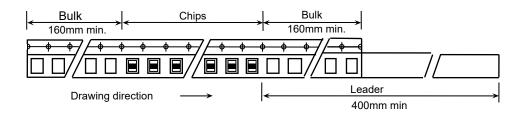
No.	Process		Condition
5	Soldering	(also called a "blower") rather t	possibly be reduced by using a spot heater
		capacitor compared to using a uniformly with a small heat gra stress caused by quick heatin Moreover, where ultra-small c	r may suppress the occurrence of cracks in the a soldering iron. A spot heater can heat up a capacitor adient which leads to lower thermal g and cooling or localized heating. apacitors are mounted close together on a printed spot heater can eliminate the risk of direct contact iron and a capacitor.
		capacitor may occur due to he such an occurrence. Keep more than 5mm betwee The blower temperature of the The airflow shall be set as we The diameter of the nozzle is standard and common. Duration of blowing hot air is r area of the capacitor and melt The angle between the nozzle in order to work easily and to As is the case when using a s capacitors and improves oper	recommended to be 2mm(one-outlet type). The size is recommended to be 30s or less, considering surface ting temperature of solder. and the capacitor is recommended to be 45degrees avoid partial area heating. oldering iron, preheating reduces thermal stress on
			-
		Nozzle angle	45degrees
		Nozzle temp. Airflow	400°C and less Set as weak as possible (The airflow shall be the minimum value necessary for solder to melt in the conditions mentioned above.)
		Nozzle diameter	ϕ 2mm (one-outlet type)
		Blowing duration	30s and less
		Example of recommended	spot heater use One-outlet type nozzle Angle : 45degrees
		5-8. Sn-Zn solder Sn-Zn solder affects product relia Please contact TDK in advance v	ibility.

No.	Process	Condition
5	Soldering	 5-9. Countermeasure for tombstone The misalignment between the mounted positions of the capacitors and the land patterns should be minimized. The tombstone phenomenon may occur especially the capacitors are mounted (in longitudinal direction) in the same direction of the reflow soldering. (Refer to JEITA RCR-2335C Annex A (Informative) Recommendations to prevent the tombstone phenomenon)
6	Cleaning	 If an unsuitable cleaning fluid is used, flux residue or some foreign articles may stick to chip capacitors surface to deteriorate especially the insulation resistance. If cleaning condition is not suitable, it may damage the chip capacitors. If cleaning condition is not suitable, it may damage the chip capacitors. Insufficient washing Terminal electrodes may corrode by Halogen in the flux.
		 (2) Halogen in the flux may adhere on the surface of capacitors, and lower the insulation resistance. (3) Water soluble flux has higher tendency to have above mentioned problems (1) and (2). 2)-2. Excessive washing When ultrasonic cleaning is used, excessively high ultrasonic energy output can affect the connection between the ceramic chip capacitor's body and the terminal electrode. To avoid this, following is the recommended condition. Power : 20 W/ l max. Frequency : 40 kHz max. Washing time : 5 minutes max. 2)-3. If the cleaning fluid is contaminated, density of Halogen increases, and it may bring the same result as insufficient cleaning.
7	Coating and molding of the P.C.board	 When the P.C.board is coated, please verify the quality influence on the product. Please verify carefully that there is no harmful decomposing or reaction gas emission during curing which may damage the chip capacitors. Please verify the curing temperature.
8	Handling after chip mounted Caution	1) Please pay attention not to bend or distort the P.C.board after soldering in handling otherwise the chip capacitors may crack.

No.	Process	Condition							
8	Handling after chip mounted A Caution	proper tooling. Printed circ cropping jig as shown in	2) Printed circuit board cropping should not be carried out by hand, but by using the proper tooling. Printed circuit board cropping should be carried out using a board cropping jig as shown in the following figure or a board cropping apparatus to prevent inducing mechanical stress on the board.						
		(1)Example of a board cropping jig Recommended example: The board should be pushed from the back side, close to the cropping jig so that the board is not bent and the stress applied to the capacitor is compressive. Unrecommended example: If the pushing point is far from the cropping jig and the pushing direction is from the front side of the board, large tensile stress is applied to the capacitor, which may cause cracks.							
		Outline of jig	Recommended Unrecommended						
		Printed circuit board Slot Slot Components Slot Components Compone							
		(2)Example of a board cr							
		-	l circuit board cropping machine is shown below. The sare aligned with one another along the lines with the						
		V-grooves on printed	circuit board when cropping the board.						
			mple: Misalignment of blade position between top and , or front and rear blades may cause a crack in the						
		capacitor.							
		Outline of mac	hine Principle of operation						
		Top blade Printed circuit board V-groove Bottom blade							
			Cross-section diagram						
		Printed circuit board Top blade							
		V-groove Bottom blade							
		Unrecommended							
		Recommended Top-bottom Left-right Front-rear							
		Top blade							
		Board	Top blade Top blade						
		Bottom blade	Rottom blada Rottom blada						
			Bottom blade Bottom blade Bottom blade						

No.	Process		Condition			
8	Handling after chip mounted Caution	3) When functional check of the P.C.board is performed, check pin pressure tends to be adjusted higher for fear of loose contact. But if the pressure is excessive and bend the P.C.board, it may crack the chip capacitors or peel the terminations off. Please adjust the check pins not to bend the P.C.board.				
		Item	Not recommended	Recommended		
		Board bending	Termination peeling Check pin	Support pin		
9	Handling of loose chip capacitors	 1) If dropped the chip capacitors may crack. Once dropped do not use it. Especial the large case sized chip capacitors are tendency to have cracks easily, so ple handle with care. Crack Floor 2) Pilling the P.C.board after mounting for storage or handling, the corner of the P board may hit the chip capacitors of another board to cause crack. 				
10	Capacitance aging		rs (Class 2) have aging in the capac e constant circuit. In case of the time ne well.			
11	Estimated life and estimated failure rate of capacitors	and the voltage RCR-2335C estimated fail Temperature The failure ra	timated life and the estimated failure ge. This can be calculated by the eq Annex F (Informative) Calculation of ure rate (Voltage acceleration coeff acceleration coefficient : 10°C rule) te can be decreased by reducing the be guaranteed.	uation described in JEITA the estimated lifetime and the icient : 3 multiplication rule,		

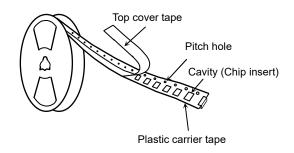
No.	Process	Condition
12	Caution during operation of equipment	 A capacitor shall not be touched directly with bare hands during operation in order to avoid electric shock. Electric energy held by the capacitor may be discharged through the human body when touched with a bare hand. Even when the equipment is off, a capacitor may stay charged. The capacitor should be handled after being completely discharged using a resistor.
		2) The terminals of a capacitor shall not be short-circuited by any accidental contact with a conductive object. A capacitor shall not be exposed to a conductive liquid such as an acid or alkali solution. A conductive object or liquid, such as acid and alkali, between the terminals may lead to the breakdown of a capacitor due to short circuit
		 Confirm that the environment to which the equipment will be exposed during transportation and operation meets the specified conditions. Do not to use the equipment in the following environments. (1) Environment where a capacitor is spattered with water or oil (2) Environment where a capacitor is exposed to direct sunlight (3) Environment where a capacitor is exposed to Ozone, ultraviolet rays or radiation (4) Environment where a capacitor exposed to corrosive gas(e.g. hydrogen sulfide, sulfur dioxide, chlorine. ammonia gas etc.) (5) Environment where a capacitor exposed to vibration or mechanical shock exceeding the specified limits. (6) Atmosphere change with causes condensation
13	Others Caution	The product listed in this specification is intended for use in automotive applications under-normal operation and usage conditions. The product is not designed or warranted to meet the requirements of application
		listed below, whose performance and/or quality requires a more stringent level of safety or reliability, or whose failure, malfunction or defect could cause serious damage to society, person or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below or for any other use exceeding the range or conditions set forth in this specification sheet. If you intend to use the products in the applications listed below or if you have special requirements exceeding the range or conditions set forth in this specification, please contact us.
		 (1) Aerospace/Aviation equipment (2) Transportation equipment (electric trains, ships etc.) (3) Medical equipment (Excepting Pharmaceutical Affairs Law classification Class1, 2) (4) Power-generation control equipment (5) Atomic energy-related equipment (6) Seabed equipment (7) Transportation control equipment (8) Public information-processing equipment (9) Military equipment (10) Electric heating apparatus, burning equipment (11) Disaster prevention/crime prevention equipment (12) Safety equipment
		(13) Other applications that are not considered general-purpose applications When designing your equipment even for general-purpose applications, you are kindly requested to take into consideration securing protection circuit/device or providing backup circuits in your equipment. In addition, although the product listed in this specification is intended for use in automotive applications as described above, it is not prohibited to use for general electronic equipment, whose performance and/or quality doesn't require a more stringent level of safety or reliability, or whose failure, malfunction or defect could not cause serious damage to society, person or property. Therefore, the description of this caution will be applied, when the product is used in general electronic equipment under a normal operation and usage conditions.


14. TAPE PACKAGING SPECIFICATION

1. CONSTRUCTION AND DIMENSION OF TAPING

1-1. Dimensions of carrier tape

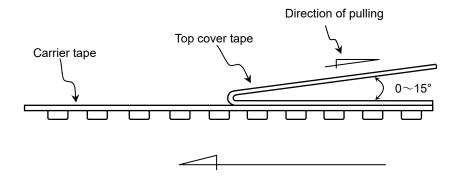
Dimensions of plastic tape shall be according to Appendix 3, 4.


1-2. Bulk part and leader of taping

1-3. Dimensions of reel

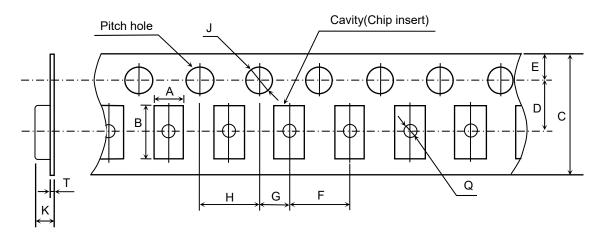
Dimensions of \emptyset 178 reel shall be according to Appendix 5, 6. Dimensions of \emptyset 330 reel shall be according to Appendix 7, 8.

1-4. Structure of taping


2. CHIP QUANTITY

Please refer to the table A in the end of the specification.

3. PERFORMANCE SPECIFICATIONS

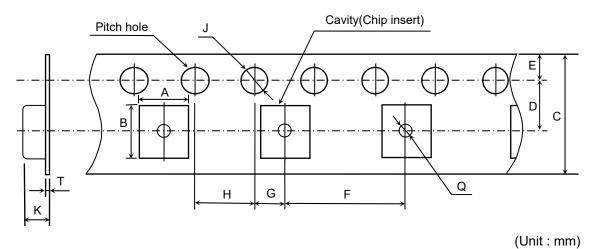

3-1. Fixing peeling strength (top cover tape)

0.05N < Peeling strength < 0.7N

- 3-2. Carrier tape shall be flexible enough to be wound around a minimum radius of 30mm with components in tape.
- 3-3. The missing of components shall be less than 0.1%
- 3-4. Components shall not stick to fixing tape.
- 3-5. When removing the cover tape, there shall not be difficulties by unfitting clearance gap, burrs and crushes of cavities. Also the sprocket holes shall not be covered by absorbing dust into the suction nozzle.

Plastic Tape

(Unit : mm)


Symbol Type	A	В	С	D	E	F	
CGA6	(2.90)	(3.60)	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	4.00 ± 0.10	
(CC1210)	(=:== ;	()	*12.0 ± 0.30	*5.50 ± 0.05			
Symbol Type	G	Н	J	K	Т	Q	
CGA6 (CC1210)	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 +0.10 0	3.20 max.	0.60 max.	Ø 0.50 min.	

() Reference value.

Exceptionally no hole in the cavity is applied. Please inquire if hole in cavity is mandatory.

* Applied to thickness, 2.5mm products.

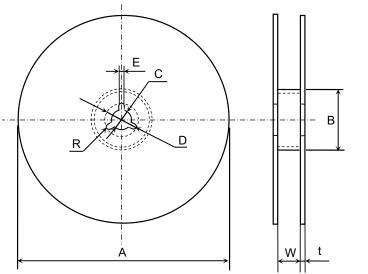
Plastic Tape


						(0)	
Symbol Type	А	В	С	D	E	F	
CGA7 (CC1808)	12501						
CGA8 (CC1812)	(3.60)	(5.20)	12.0 ± 0.30	5.50 ± 0.05	1.75 ± 0.10	8.00 ± 0.10	
CGA9 (CC2220)	(5.40)	(6.10)					
Symbol Type	G	Н	J	К	Т	Q	
CGA7 (CC1808)							
CGA8 (CC1812)	2.00 ± 0.05	4.00 ± 0.10	Ø 1.5 +0.10 0	6.50 max.	0.60 max.	Ø 1.50 min.	
CGA9 (CC2220)							

() Reference value.

CGA6 E C R D W2 B B W2 H B W2 H C C C C C C C C C C C C C	Dimensions of reel (Material : Polystyrene)											
$\frac{W_2}{B}$	CGA6											
			R	E C D		B	- -					
Symbol A B C D E W1	Symbol	А	В	С	D	E	W ₁					
Dimension Ø178 ± 2.0 Ø60 ± 2.0 Ø13 ± 0.5 Ø21 ± 0.8 2.0 ± 0.5 9.0 ± 0.3	Dimension	Ø178 ± 2.0	Ø60 ± 2.0	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	9.0 ± 0.3					
Symbol W ₂ R	Symbol	W ₂	R									
Dimension 13.0 ± 1.4 1.0	Dimension	13.0 ± 1.4	1.0									

Appendix 6


<u>Dimensions of reel</u> (Material : Polystyrene) CGA6(2.5mm thickness products), CGA7, CGA8, CGA9

					(•	,	
Symbol	А	В	С	D	Е	W_1	
Dimension	Ø178 ± 2.0	Ø60 ± 2.0	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	13.0 ± 0.3	
Symbol	W ₂	R					
Dimension	17.0 ± 1.4	1.0					

Appendix 7										
Dimensions of reel (Material : Polystyrene)										
CGA6										
	B B 									
	ł	\longrightarrow	\leftarrow	(Unit : mm)						
Symbol	٨	D	С	D						
Symbol		A B		D	E	W				
Dimension	Ø382 max. (Nominal Ø330)	Ø50 min.	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	10.0 ± 1.5				
Symbol	t	R								
Dimension	2.0 ± 0.5	1.0								

<u>Dimensions of reel</u> (Material : Polystyrene) CGA6(2.5mm thickness products), CGA7, CGA8, CGA9

(Unit : mm)

Symbol	А	В	С	D	Е	W
Dimension	Ø382 max. (Nominal Ø330)	Ø50 min.	Ø13 ± 0.5	Ø21 ± 0.8	2.0 ± 0.5	14.0 ± 1.5
Symbol	t	R				
Dimension	2.0 ± 0.5	1.0	-			

15.Table A (TDK products line up)

No Your Part No.		TDK product		Dimensions		Q	tanδ (max.)	Temp. Chara	cteristics of Cap.	Temp cycle	Moisture Resistance (Steady state)	Moisture Resistance		Life	Tape packaging	Qty. pe	er 1 reel
		. En product	L (mm)	W (mm)	T (mm)	(min.)	(min.) (max.)	Measuring frequency	Measuring voltage	ΔC/C	ΔC/C	ΔC/C	ΔC/C	Test voltage	materials	φ178mm	φ 330mm
1		CGA6M1C0G3A102J	3.20±0.40	2.50±0.30	2.00±0.20	1,000		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000
2		CGA6M1C0G3A152J	3.20±0.40	2.50±0.30	2.00±0.20	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000
3		CGA6M1C0G3A222J	3.20±0.40	2.50±0.30	2.00±0.20	1,000		1kHz	$0.5{\sim}5Vrms$	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000
4		CGA6M1C0G3A332J	3.20±0.40	2.50±0.30	2.00±0.20	1,000		1kHz	$0.5{\sim}5Vrms$	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000
5		CGA6M1C0G3A472J	3.20±0.40	2.50±0.30	2.00±0.20	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000
6		CGA6M1C0G3A682J	3.20±0.40	2.50±0.30	2.00±0.20	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000
7		CGA6P1C0G3A103J	3.20±0.40	2.50±0.30	2.50±0.30	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000
8		CGA6P1C0G3A153J	3.20±0.40	2.50±0.30	2.50±0.30	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000
9		CGA6P1C0G3A223J	3.20±0.40	2.50±0.30	2.50±0.30	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000
10		CGA7F1C0G3F100F	4.50±0.40	2.00±0.20	0.85±0.15	600		1MHz	$0.5{\sim}5Vrms$	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000
11		CGA7G1C0G3F150K	4.50±0.40	2.00±0.20	1.10±0.20	700		1MHz	$0.5{\sim}5Vrms$	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000
12		CGA7G1C0G3F220K	4.50±0.40	2.00±0.20	1.10±0.20	840		1MHz	$0.5{\sim}5Vrms$	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	5,000
13		CGA7L1C0G3F330K	4.50±0.40	2.00±0.20	1.60±0.20	1,000		1MHz	$0.5{\sim}5Vrms$	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	3,000
14		CGA7L1C0G3F470K	4.50±0.40	2.00±0.20	1.60±0.20	1,000		1MHz	$0.5{\sim}5Vrms$	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	3,000
15		CGA7M1C0G3F680K	4.50±0.40	2.00±0.20	2.00±0.20	1,000		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	3,000
16		CGA7M1C0G3F101K	4.50±0.40	2.00±0.20	2.00±0.20	1,000		1MHz	$0.5{\sim}5Vrms$	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	3,000
17		CGA7K1X7R3D471K	4.50±0.40	2.00±0.20	1.30±0.20	1	0.03	1kHz	1.0Vrms	±7.5%	±12.5%	±12.5%	±15%	1.0 x R.V.	Plastic	1,000	5,000
17											-	-	-	-		,	,
18		CGA7K1X7R3D102K	4.50±0.40	2.00±0.20	1.30±0.20		0.03	1kHz	1.0Vrms	±7.5%	±12.5%	±12.5%	±15%	1.0 x R.V.	Plastic	1,000	5,000
19		CGA7K1X7R3A471K	4.50±0.40	2.00±0.20	1.30±0.20		0.03	1kHz	1.0Vrms	±7.5%	±12.5%	±12.5%	±15%	1.0 x R.V.	Plastic	1,000	5,000
20		CGA7K1X7R3A102K	4.50±0.40	2.00±0.20	1.30±0.20		0.03	1kHz	1.0Vrms	±7.5%	±12.5%	±12.5%	±15%	1.0 x R.V.	Plastic	1,000	5,000
							-				•	1	-	-		-	
21		CGA8L1C0G3F101K	4.50±0.40	3.20±0.40	1.60±0.20	1,000		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	3,000
22		CGA8L1C0G3F151K	4.50±0.40	3.20±0.40	1.60±0.20	1,000		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	3,000
23		CGA8M1C0G3F221K	4.50±0.40	3.20±0.40	2.00±0.20	1,000		1MHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	1,000	3,000
24		CGA8P1C0G3F331K	4.50±0.40	3.20±0.40	2.50±0.30	1,000		1MHz	$0.5{\sim}5Vrms$	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	500	3,000
25		CGA8K1X7R3D222K	4.50±0.40	3.20±0.40	1.30±0.20		0.03	1kHz	1.0Vrms	±7.5%	±12.5%	±12.5%	±15%	1.0 x R.V.	Plastic	1,000	5,000
25		CGAORTATICODZZZR	4.3010.40	3.2010.40	1.3010.20		0.03	TKHZ	1.011115	11.570	112.570	±12.570	11370	1.0 X IX.V.	riastic	1,000	3,000
26		CGA8L1X7R3A472K	4.50±0.40	3.20±0.40	1.60±0.20		0.03	1kHz	1.0Vrms	±7.5%	±12.5%	±12.5%	±15%	1.0 x R.V.	Plastic	1,000	3,000
27		CGA8M1X7R3A103K	4.50±0.40	3.20±0.40	2.00±0.20		0.03	1kHz	1.0Vrms	±7.5%	±12.5%	±12.5%	±15%	1.0 x R.V.	Plastic	1,000	3,000
00		000000000000000000000000000000000000000	5 70 10 40	E 00+0 40	0.0010.00	4 000	r	41.11-	0.5 5)/	10.50/	. 5.00/	.7.50/	10.00/	10.001	Direti	500	0.000
28		CGA9Q1C0G3A103J	5.70±0.40	5.00±0.40	2.80±0.30	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	500	2,000
29		CGA9Q1C0G3A153J	5.70±0.40	5.00±0.40	2.80±0.30	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	500	2,000
30		CGA9Q1C0G3A223J	5.70±0.40	5.00±0.40	2.80±0.30	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	500	2,000
31	%) is also available t	CGA9Q1C0G3A333J	5.70±0.40	5.00±0.40	2.80±0.30	1,000		1kHz	0.5~5Vrms	±2.5%	±5.0%	±7.5%	±3.0%	1.0 x R.V.	Plastic	500	2,000

M(±20%) is also available to support for X7R.

. Δ

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by TDK manufacturer:

Other Similar products are found below :

M39014/02-1225V M39014/22-0631 D55342E07B523DR-T/R NCA1206X7R103K50TRPF NCA1206X7R104K16TRPF NIN-FB391JTRF NIN-FC2R7JTRF NMC0201X5R474K4TRPF NMC0402NPO220J50TRPF NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R153K16TRPF NMC0603NPO1R8C50TRPF NMC0603NPO201J50TRPF NMC0603NPO330G50TRPF NMC0603X5R475M6.3TRPF NMC0805NPO270J50TRPF NMC0805NPO820J50TRPF NMC0805X7R224K16TRPLPF NMC0805X7R224K25TRPF NMC1206X7R102K50TRPF NMC-H0805X7R472K250TRPF NMC-L0402NPO7R0C50TRPF NMC-L0603NPO2R2B50TRPF NMC-P0805NPO221J500TRPLPF NMC-Q0402NPO8R2D200TRPF C1206C101J1GAC C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT 1812J2K00332KXT CDR31BX103AKWR CDR33BX104AKUR CDR33BX683AKUS CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H120J CGA2B2C0G1H151J CGA2B2C0G1H181JT0Y0F CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C CGA2B2C0G1H390J CGA2B2C0G1H391J CGA2B2C0G1H3R3C CGA2B2C0G1H680J