
BUS BUFFER/LINE DRIVER 3-STATE

www.sot23.com.tw

Features

- Wide operating temperature range: $T_{opr} = -40$ to 125 °C (Note 2)
- High output current: ± 24 mA (min) at V_{CC} = 3.0 V
- Super high speed operation: $t_{pd} = 2.6$ ns (typ.) at $V_{CC} = 5.0$ V, $C_L = 50$ pF
- Operation voltage range: $V_{CC} = 1.65$ to 5.5 V
- ♦ 5.5 V tolerant inputs
- 5.5 V power down protection output

Pin Configuration

Input A	Input G	Output Y	
х	н	Z	
L	L	L	
Н	L	н	

X: Don't care

Z: High impedance

Marking Information

BUS BUFFER/LINE DRIVER 3-STATE

www.sot23.com.tw

Absolute Maximum Ratings (Note) (Unless otherwise specified, T_a = 25 °C)

Characteristics	Symbol	Note	Rating	Unit
Supply voltage	V _{CC}		-0.5 to 6.0	V
Input voltage	V _{IN}		-0.5 to 6.0	V
DC output voltage	V _{OUT}	(Note 1)	-0.5 to 6.0	V
		(Note 2)	-0.5 to V _{CC} + 0.5	
Input diode current	I _{IK}		-20	mA
Output diode current	I _{ок}	(Note 3)	-20	mA
DC output current	IOUT		±50	mA
V _{CC} /ground current	Icc		±50	mA
Power dissipation	PD		200	mW
Storage temperature	T _{stg}		-65 to 150	°C

Note 1: V_{CC} = 0 V or high impedance condition

Note 2: High (H) or Low (L) state. I_{OUT} absolute maximum rating must be observed. Note 3: V_{OUT} < GND

Operating Ranges (Note)

Characteristics	Symbol	Note	Test Condition	Rating	Unit
Supply voltage	V _{cc}		_	1.65 to 5.5	V
		(Note 1)	_	1.5 to 5.5	1
Input voltage	V _{IN}		-	0 to 5.5	V
Output voltage	V _{OUT}	(Note 2)	-	0 to 5.5	V
		(Note 3)	_	0 to V _{CC}	1
Operating temperature	T _{opr}	(Note 4)	_	-40 to 125	°C
		(Note 5)	-	-40 to 85	1
Input rise and fall time	dt/dv		V_{CC} = 1.8 ± 0.15 V, 2.5 ± 0.2 V	0 to 20	ns/V
			$V_{CC} = 3.3 \pm 0.3 V$	0 to 10	1
			$V_{CC} = 5.0 \pm 0.5 V$	0 to 5	1

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either V_{CC} or GND.

Note 1: Data retention only

Note 2: $V_{CC} = 0$ V or high impedance condition

Note 3: High (H) or Low (L) state.

Note 4: For devices with the ordering part number ending in J(CT.

Note 5: For devices except those with the ordering part number ending in J(CT.

BUS BUFFER/LINE DRIVER 3-STATE

www.sot23.com.tw

Electrical Characteristics

DC Characteristics (Unless otherwise specified, $T_a = 25$ °C)

Characteristics	Symbol	Test Condition	ı	V _{CC} (V)	Min	Тур.	Max	Unit
High-level input voltage	V _{IH}	_	_		$V_{CC} \times 0.88$	7	-	V
				2.3 to 5.5	$V_{CC} \times 0.75$	—	-	
Low-level input voltage	VIL	_		1.65 to 1.95	_	(<u> </u>	$V_{CC} \times 0.12$	V
				2.3 to 5.5		(<u></u>)	$V_{CC} \times 0.25$	
High-level output voltage	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -100 μA	1.65	1.55	1.65		V
				2.3	2.2	2.3	_	
				3.0	2.9	3.0	—	
				4.5	4.4	4.5	_	
			I _{OH} = -8 mA	2.3	1.9	2.15		
			I _{OH} = -16 mA	3.0	2.4	2.8	_	
			I _{OH} = -24 mA	3.0	2.3	2.68		
			I _{OH} = -32 mA	4.5	3.8	4.2		
_ow-level output voltage	V _{OL}	V _{IN} = V _{IL}	I _{OL} = 100 μA	1.65	— — N	0.0	0.1	V
		All the second sec		2.3	-	0.0	0.1	
				3.0	-	0.0	0.1	
				4.5	-	0.0	0.1	
			I _{OL} = 8 mA	2.3		0.1	0.3	
			I _{OL} = 16 mA	3.0		0.15	0.4	
			I _{OL} = 24 mA	3.0		0.22	0.55	
			I _{OL} = 32 mA	4.5	<u></u>	0.22	0.55	
nput leakage current	I _{IN}	V _{IN} = 5.5 V or GND		0 to 5.5	_		±1.0	μA
3-state output OFF-state eakage current	l _{oz}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 5.5 \text{ V}$		1.65 to 5.5	—	<u> </u>	±1.0	μA
Power-OFF leakage current	I _{OFF}	V_{IN} or $V_{OUT} = 5.5 V$	$V_{\rm IN}$ or $V_{\rm OUT}$ = 5.5 V			·	1	μA
Quiescent supply current	Icc	V _{IN} = V _{CC} or GND		5.5		—	2	μA

BUS BUFFER/LINE DRIVER 3-STATE

www.sot23.com.tw

Symbol **Test Condition** V_{CC} (V) Characteristics Min Max Unit 1.65 to $V_{CC} \times 0.88$ ٧ High-level input voltage VIH 1.95 2.3 to 5.5 $V_{CC} \times 0.75$ ____ 1.65 to V Low-level input voltage VIL $V_{CC} imes 0.12$ 1.95 $V_{CC} imes 0.25$ 2.3 to 5.5 _ V_{IN} = V_{IH} or V_{IL} High-level output voltage V_{OH} I_{OH} = -100 μA 1.65 1.55 _ V 2.2 2.3 3.0 2.9 _ 4.4 4.5 $I_{OH} = -8 \text{ mA}$ 2.3 1.9 _ I_{OH} = -16 mA 2.4 3.0 I_{OH} = -24 mA 3.0 2.3 _ I_{OH} = -32 mA 4.5 3.8 ____ VOL $V_{IN} = V_{IL}$ I_{OL} = 100 μA 1.65 V Low-level output voltage _ 0.1 2.3 0.1 3.0 _ 0.1 4.5 0.1 $I_{OL} = 8 \text{ mA}$ 2.3 0.3 _ I_{OL} = 16 mA 3.0 0.4 I_{OL} = 24 mA 3.0 0.55 _ I_{OL} = 32 mA 4.5 0.55 V_{IN} = 5.5 V or GND 0 to 5.5 Input leakage current IIN ±10.0 μΑ _ 3-state output OFF-state $V_{IN} = V_{IH} \text{ or } V_{IL}$ 1.65 to 5.5 loz ±10.0 μΑ V_{OUT} = 0 to 5.5 V leakage current Power-OFF leakage current V_{IN} or V_{OUT} = 5.5 V 0 10 μΑ IOFF _ V_{IN} = V_{CC} or GND Quiescent supply current 5.5 20 μΑ lcc _

DC Characteristics (Unless otherwise specified, Ta = -40 to 85 °C)

BUS BUFFER/LINE DRIVER 3-STATE

www.sot23.com.tw

Characteristics	Symbol	Test Condition	วท	V _{CC} (V)	Min	Max	Unit
High-level input voltage	V _{IH}			1.65 to 1.95	$V_{CC} \times 0.88$	-	V
				2.3 to 5.5	$V_{CC} \times 0.75$	—	
Low-level input voltage	VIL			1.65 to 1.95	/-	$V_{CC} imes 0.12$	V
				2.3 to 5.5	_	$V_{CC} imes 0.25$	
High-level output voltage	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -100 μA	1.65	1.55		V
				2.3	2.2	\	
				3.0	2.9		
				4.5	4.4	_	
			I _{OH} = -8 mA	2.3	1.7	_	
			I _{OH} = -16 mA	3.0	2.2		
			I _{OH} = -24 mA	3.0	2.0	2	
			I _{OH} = -32 mA	4.5	3.4	—	
Low-level output voltage	V _{OL}	V _{IN} = V _{IL}	I _{OL} = 100 μA	1.65		0.1	V
				2.3		0.1	
		1		3.0	—	0.1	
				4.5	/	0.1	
			I _{OL} = 8 mA	2.3	14	0.45	
			I _{OL} = 16 mA	3.0		0.6	
			I _{OL} = 24 mA	3.0	—	0.8	
			I _{OL} = 32 mA	4.5		0.8	
Input leakage current	I _{IN}	V _{IN} = 5.5 V or GND		0 to 5.5		±20.0	μA
3-state output OFF-state leakage current	l _{oz}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 5.5 \text{ V}$		1.65 to 5.5	—	±20.0	μA
Power-OFF leakage current	IOFF	V _{IN} or V _{OUT} = 5.5 V		0	-	100	μA
Quiescent supply current	Icc	V _{IN} = V _{CC} or GND		5.5	· · · · ·	200	μA

DC Characteristics (Note) (Unless otherwise specified, $T_a = -40$ to 125 °C)

Note: For devices with the ordering part number ending in J(CT.

BUS BUFFER/LINE DRIVER 3-STATE

www.sot23.com.tw

Characteristics	Symbol	Note	Test Condition	V _{CC} (V)	C _L (pF)	Min	Тур.	Max	Unit	
Propagation delay time	t _{PLH} ,t _{PHL}		$R_L = 1 M\Omega$	1.8 ± 0.15	15	2.0	5.3	11.0	ns	
			See 9.7 AC Test Circuit, Table 9.7.1	2.5 ± 0.2	1 [0.8	3.4	7.5		
				3.3 ± 0.3	1 [0.5	2.5	5.2		
				5.0 ± 0.5		0.5	2.1	4.5	1	
			$R_L = 500 \Omega$	3.3 ± 0.3	50	1.5	3.2	5.7	ns	
		See 9.7 AC Test Circuit, Table 9.7.1	5.0 ± 0.5		0.8	2.6	5.0			
Output enable time		R _L = 500 Ω	1.8 ± 0.15	50	2.0	7.0	12.5	ns		
				See 9.7 AC Test	2.5 ± 0.2] [1.5	4.6	8.5	
			Circuit, Table 9.7.1	3.3 ± 0.3		1.5	3.5	6.2		
				5.0 ± 0.5		0.8	2.8	5.5		
Output disable time	t _{PLZ} ,t _{PHZ}		R _L = 500 Ω	1.8 ± 0.15	50	2.0	5.4	11.0	ns	
			See 9.7 AC Test Circuit, Table 9.7.1	2.5 ± 0.2		1.5	3.5	8.0		
				3.3 ± 0.3		1.0	2.8	5.7		
				5.0 ± 0.5		0.5	2.1	4.7		
Input capacitance	C _{IN}			0 to 5.5			4	_	pF	
Power dissipation	C _{PD}	(Note 1)	-	3.3		—	17	_	pF	
capacitance				5.5			24			

AC Characteristics (Unless otherwise specified, $T_a = 25$ °C, Input: $t_r = t_f = 3 \text{ ns}$)

Note 1: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation.

BUS BUFFER/LINE DRIVER 3-STATE

www.sot23.com.tw

AC Characteristics (Unless otherwise specified, T_a = -40 to 85 °C, Input: t_r = t_f = 3 ns)

Characteristics	Symbol	Test Condition	V _{CC} (V)	C _L (pF)	Min	Max	Unit
Propagation delay time	t _{PLH} ,t _{PHL}	R _L = 1 MΩ	1.8 ± 0.15	15	2.0	11.5	ns
		See 9.7 AC Test Circuit, Table 9.7.1	2.5 ± 0.2	1	0.8	8.0	
			3.3 ± 0.3		0.5	5.5	
			5.0 ± 0.5		0.5	4.8	1
		R _L = 500 Ω	3.3 ± 0.3	50	1.5	6.0	ns
	See 9.7 AC Test Circuit, Table 9.7.1	5.0 ± 0.5		0.8	5.3	1	
Output enable time	t _{PZL} ,t _{PZH}	$\begin{array}{c} t_{\text{PZL}}, t_{\text{PZH}} & \text{R}_{\text{L}} = 500 \ \Omega \\ \text{See } 9.7 \ \text{AC} \ \text{Test} \ \text{Circuit}, \\ \text{Table } 9.7.1 \end{array}$	1.8 ± 0.15	50	2.0	13.0	ns
			2.5 ± 0.2		1.5	9.0	
			3.3 ± 0.3		1.5	6.5	
			5.0 ± 0.5		0.8	5.8	
Output disable time	t _{PLZ} ,t _{PHZ}	R _L = 500 Ω	1.8 ± 0.15	50	2.0	12.0	ns
2		See 9.7 AC Test Circuit,	2.5 ± 0.2		1.5	8.5	1
		Table 9.7.1	3.3 ± 0.3		1.0	6.0	1
			5.0 ± 0.5		0.5	5.0	1

BUS BUFFER/LINE DRIVER 3-STATE

www.sot23.com.tw

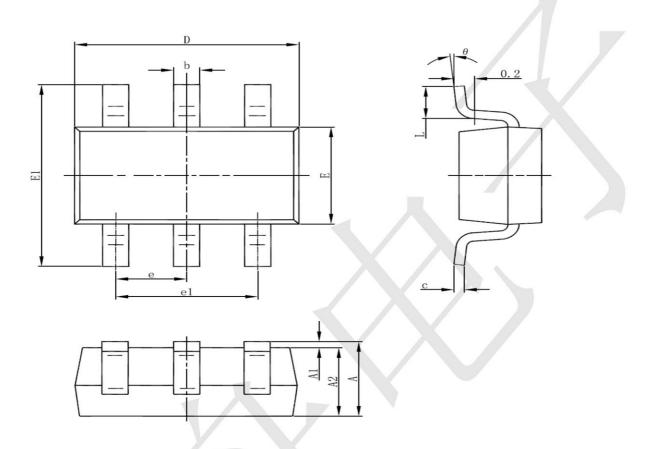
AC Characteristics (Note) (Unless otherwise specified, $T_a = -40$ to 125 °C, Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	C _L (pF)	Min	Max	Unit
Propagation delay time	t _{PLH} ,t _{PHL}	R _L = 1 MΩ	1.8 ± 0.15	15	2.0	13.0	ns
		See 9.7 AC Test Circuit, Table 9.7.1	2.5 ± 0.2		0.8	9.0	
			3.3 ± 0.3		0.5	6.5	1
			5.0 ± 0.5		0.5	5.5	1
		$R_L = 500 \Omega$ See 9.7 AC Test Circuit, - Table 9.7.1	3.3 ± 0.3	50	1.5	7.0	ns
			5.0 ± 0.5	1	0.8	6.0	1
Output enable time	t _{PZL} ,t _{PZH}	See 9.7 AC Test Circuit,	1.8 ± 0.15	50	2.0	14.5	ns
			2.5 ± 0.2		1.5	10.0	
		Table 9.7.1	3.3 ± 0.3		1.5	7.5	
			5.0 ± 0.5		0.8	6.5	
Output disable time	t _{PLZ} ,t _{PHZ}	R _L = 500 Ω	1.8 ± 0.15	50	2.0	13.5	ns
		See 9.7 AC Test Circuit, Table 9.7.1	2.5 ± 0.2		1.5	9.5	1
			3.3 ± 0.3		1.0	7.0	1
			5.0 ± 0.5		0.5	5.5	1

Note: For devices with the ordering part number ending in J(CT.

AC Test Circuit

Table 9.7.1 Parameter for AC Test Circuit	Table 9.7.1	Parameter for AC Test Circuit
---	-------------	-------------------------------


Characteristics	Switch	
t _{PLH} , t _{PHL}	Open	
t _{PLZ} , t _{PZL}	$V_{CC} \times 2$	
t _{PHZ} , t _{PZH}	GND	

BUS BUFFER/LINE DRIVER 3-STATE

www.sot23.com.tw

SOT23-5 Package Outline Drawing

Sumbal	Dimensions In	n Millimeters	Dimensions	s In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037(BSC)	
e1	1.800	2.000	0.071	0.079
4	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

台舟电子版权所有

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by TECH PUBLIC manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP NL17SG125DFT2G NLV27WZ125USG CD4041UBE 028192B 042140C 051117G 070519XB NL17SG07DFT2G NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 74LVC1G125FW4-7 NL17SH17P5T5G NLV17SZ07DFT2G NC7WZ17FHX 74HCT126T14-13 74LVC2G34FW4-7 74VHC9126FT(BJ) NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC1G126FW4-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC NLVVHCT50ADTR2G TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87100NQCT LE87285NQC LE87285NQCT LE87290YQC LE87290YQCT 74AUP1G125FW5-7 NLU2G16CMUTCG NL17SG126P5T5G MC74LCX244MN2TWG NLV74VHC125DTR2G