

Features

TECH PUBLIC

一台舟申子—

- 2µA Ground Current at no Load
- ±2% Output Accuracy
- 500mA Output Current
- 10nA Disable Current (by option)
- Wide Operating Input Voltage Range: 1.2V to 5.5V
- Dropout Voltage: 0.32V at 500mA/ Vout 3.3V
- Support Fixed Output Voltage 1.2V, 1.5V, 1.6V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V
- Stable with Ceramic or Tantalum Capacitor
- Current Limit Protection
 Over Temperature Protection
- SOT23-5, SOT89-3 Packages

General Descrition

The HT78XX series are a group of low-dropout (LDO) voltage regulators offering the benefits of wide input voltage range from 1.2V to 5.5V, low dropout voltage, low power consumption, and miniaturized packaging. Quiescent current of only 2µA makes these devices ideal for powering the battery-powered, always-on systems that require very little idle=state power dissipation to a longer service life. There is an option of

Applications

- · Portable, Battery Powered Equipment
- Low Power Microcontrollers
- · Laptop, Palmtops and PDAs
- Wireless Communication Equipment
- Audio/Video Equipment
- · Car Navigation Systems

shutdown mode by selecting the parts with the EN pin and pulling it low. The shutdown current in this mode goes down to only 10nA (typical).

The HT78XX series of linear regulators are stable with the ceramic output capacitor over its wide input range from 1.2V to 5.5V and the entire range of output load current (0mA to 500mA).

Ordering Information

HT7833

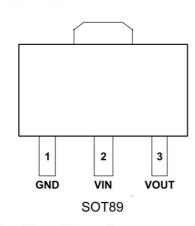
Output voltage: 12=1.2V

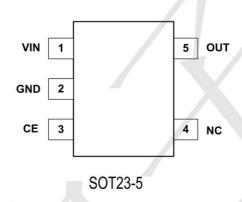
15=1.5V

18=1.8V

30=3.0V

33=3.3V


XX=X.XV



500mA,2uA, Higt PSRR Voltage Regulator

www.sot23.com.tw

PIN CONFIGURATION

Typical Application Circuit

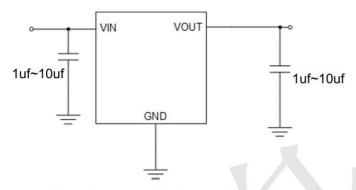


Figure 1: Application circuit of Fixed Vout LDO

1uf~10uf GND Tuf~10uf

Figure 2: Application circuit of Fixed Vout LDO with enable function

ABSOLUTE MAXIMUM RATINGS

Parameter		Value	Unit	
Supply Voltage		-0.3~+6.5	V	
Power Dissipation	SOT-23-5	400	mW	
	SOT-89	600	mW	
Thermal Resistance, Junction-to-Ambient	SOT-23-5	380	°C/W	
	SOT-89	180	°C/W	
Operating Junction Temperature		-40 ~ +125	°C	
Storage Temperature Range		-65 ~ +150	°C	
Lead Temperature (Soldering, 10 sec)		300	°C	

Electrical Characteristics (T_A=25 C unless otherwise noted)

(V_{IN} =5V, V_{EN} = 5V T_A=25°C unless otherwise specified)

	therwise specified)				_		
Parameter	Symbol	Tes	t Conditions	Min	Тур	Max	Unit
Supply Voltage	Vin			1.2	-	5.5	V
DC Output Voltage Accuracy		I _{LOAD} =0.	.1mA	-2		2	%
	V _{DROP_3V}	V _{OUT} ≥ 3	V		0.32		
	V _{DROP_2.8V}	V _{OUT} = 2.8V			0.36		V
Dropout Voltage (I _{LOAD} =600mA)	V _{DROP_2.5V}	V _{OUT} = 2.5V V _{OUT} = 1.8V			0.36		
(Note 3)	VDROP_1.8V				0.57		
	V _{DROP_1.5V}	V _{OUT} = 1	.5V		0.71		
	V	V = 1	.2V		0.8		1
Ground Current	lα	I _{LOAD} = C	0mA		2		μA
Shutdown Ground Current	I _{SD}	V _{EN} = 0V	' ,	7	0.01	0.5	
V _{OUT} Shutdown Leakage Current	ILEAK	V _{OUT} = 0V			0.01	0.5	μA
Facility Theorem 1970	VIH	EN Risir	ng			2	
Enable Threshold Voltage	VIL	EN Falling 0.6		V			
EN Input Current	I _{EN}	V _{EN} = 5V			10	100	nA
Line Regulation	ΔLINE	1.5V ≤ V	$I_{LOAD} = 30 \text{mA},$ $1.5 \text{V} \le \text{V}_{IN} \le 5.5 \text{V} \text{ or}$ $(\text{V}_{OUT} + 0.2 \text{V}) \le \text{V}_{IN} \le 5.5 \text{V}$		0.2		%
Load Regulation	ΔLOAD	10mA ≤ I _{LOAD} ≤ 0.3A			0.2		%
Output Current Limit	ILIM	V _{OUT} =0		500	800		mA
		Vouт	f = 100Hz		80		
Power Supply Rejection Ratio (ILOAD =5mA)	PSRR	=1.2V, V _{IN} = 2V	f = 1kHz		75		dB
Output Voltage Noise		V _{IN} =	V _{OUT} =0.9V		40		
(BW = 10Hz to 100kHz, C _{OUT} =1μF,)		3.5V I _{LOAD} =0.1A	V _{OUT} =2.8V		50		μVRMS
Thermal Shutdown Temperature	T _{SD}				155		°C
Thermal Shutdown Hysteresis	ΔT _{SD}	I _{LOAD} =10mA			15		°C
Discharge Resistance	annesses Villagilla (Maria)	EN = 0V , V _{OUT} = 0.1V			100		Ω

500mA, 2uA, Higt PSRR Voltage Regulator

www.sot23.com.tw

- **Note 1.** Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured at $T_A = 25^{\circ}$ C on a TECH PUBLICboard.
- Note 3. $V_{DROP} = V_{IN} V_{OUT}$ when the V_{OUT} is 98% of its target value.

500mA, 2uA, Higt PSRR Voltage Regulator

www.sot23.com.tw

Typical Characteristics

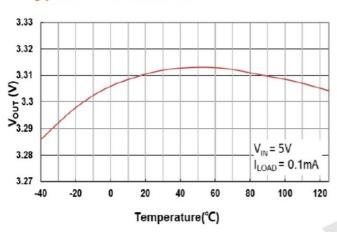


Fig. 5 Output Voltage vs. Temperature

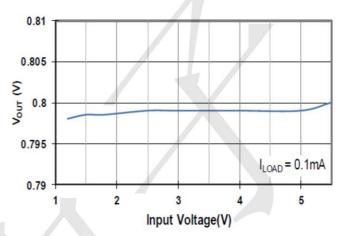


Fig. 6 Output Voltage vs. Input Voltage

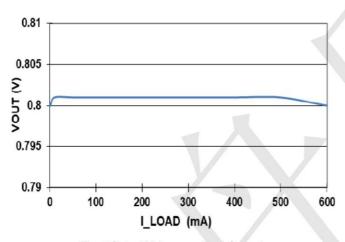


Fig. 7 Output Voltage vs. Load Current

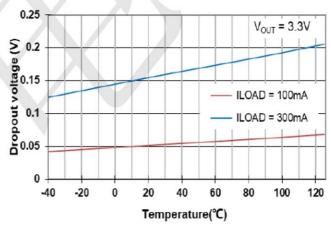


Fig. 8 Dropout Voltage vs. Temperature

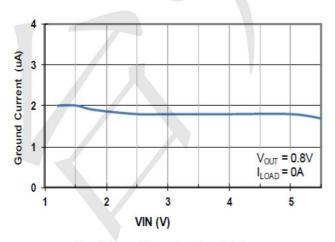
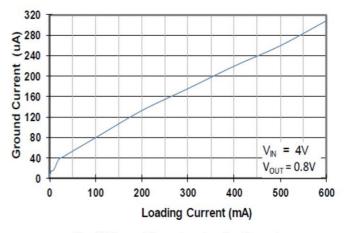
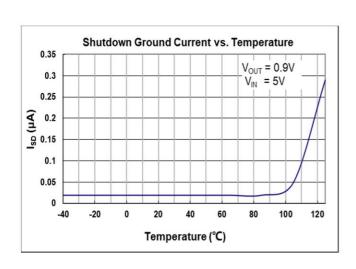
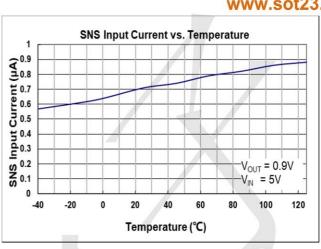
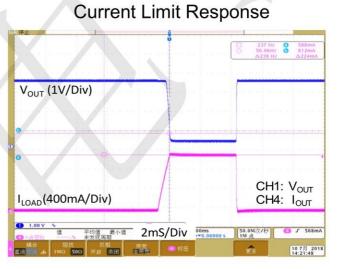


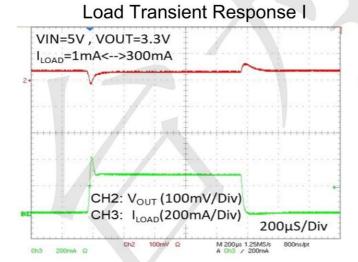
Fig. 9 Ground Current vs. Input Voltage

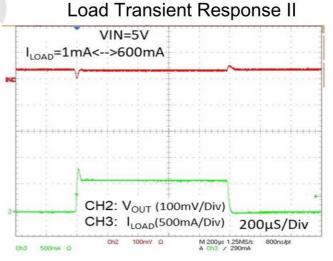



Fig. 10 Ground Current vs. Loading Current




500mA,2uA, Higt PSRR Voltage Regulator


www.sot23.com.tw



Current Limit vs. Input voltage 1300 (1200 (1200 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 1100000 1100000 1

HT7833

500mA,2uA, Higt PSRR Voltage Regulator

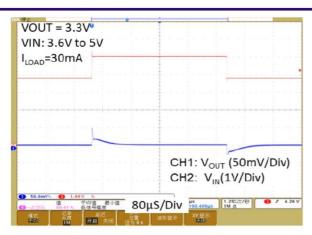


Fig. 17 Line Transient Response

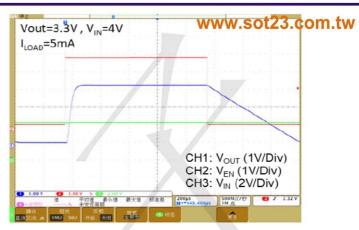


Fig. 18 V_{OUT} Turn On/Off by EN

WWW.TECHPUBLIC.COM.TW

BLOCK DIAGRAM

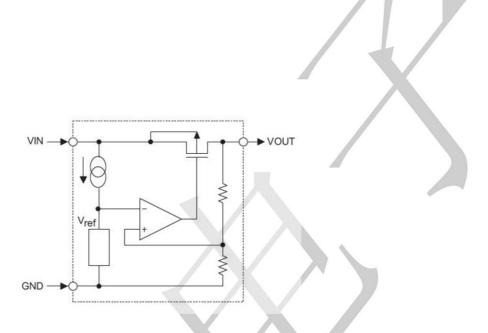
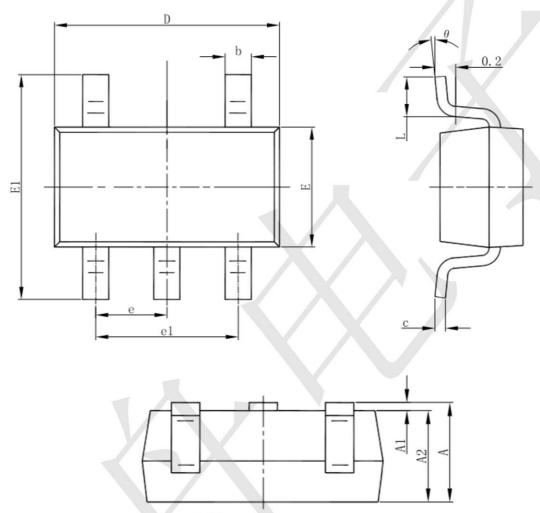
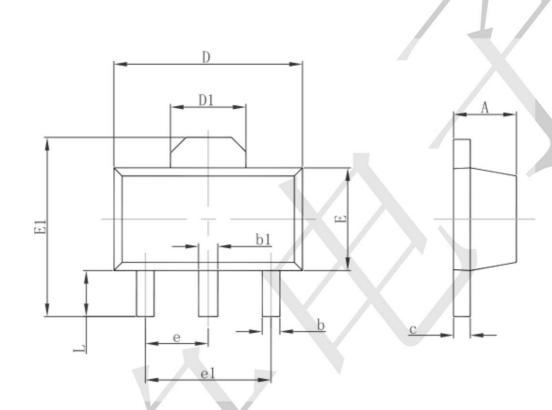



Figure 2.HT75XX Block Diagram

Package informantion SOT23-5


Symbol	Dimensions In	Millimeters	Dimensions	In Inches
	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(E	BSC)	0.037(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

Package informantion

SOT89-3

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550 REF.		0.061 REF.		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP.		0.060	TYP.	
e1	3.000 TYP.		0.118	TYP.	
1	0.900	1.200	0.035	0.047	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by TECH PUBLIC manufacturer:

Other Similar products are found below:

LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG PQ3DZ53U LV56801P-E TLE42794G L78L05CZ/1SX L78LR05DL-MA-E 636416C 714954EB BA033LBSG2-TR LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 LV5680NPVC-XH LT1054CN8 MP2018GZD-5-Z MP2018GZD-33-Z MIC5281-3.3YMM MC78L06BP-AP TA48LS05F(TE85L,F) TA78L12F(TE12L,F) TC47BR5003ECT TCR2LN12,LF(8 TCR2LN28,LF(8 TCR2LN30,LF(8 TCR3DF295,LM(CT TCR3DF40,LM(CT BA178M20CP-E2 L78M12ABDT LM7812SX/NOPB LR645N3-G-P003 LR645N3-G-P013 ZXTR2005P5-13 SCD7812BTG TCR3DF335,LM(CT ZXTR2012K-13 TLE42994E V33 ZXTR2008K-13 ZXTR2005K-13 L88R05DL-E ADP3300ARTZ-2.7RL7 LM120K-15/883 IFX54441LDVXUMA1 LM317D2T-TR